Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (7): 2374-2382.doi: 10.12305/j.issn.1001-506X.2024.07.19
• Systems Engineering • Previous Articles
Nuanchen WANG, Xiaolong WANG, Ge MU, Xinjin LI
Received:
2023-05-30
Online:
2024-06-28
Published:
2024-07-02
Contact:
Ge MU
CLC Number:
Nuanchen WANG, Xiaolong WANG, Ge MU, Xinjin LI. Construction of equipment system knowledge graph based on meta-model[J]. Systems Engineering and Electronics, 2024, 46(7): 2374-2382.
Table 3
Conceptual correlations of equipment systems"
序号 | 关系名称 | 关系类型 | 含义 | 概念类 |
1 | 执行 | 交叠关系 | 执行者执行作战、保障等活动 | 执行者→活动 |
2 | 约束 | 交叠关系 | 指南约束活动/执行者 | 指南→活动、执行者 |
3 | 支持 | 交叠关系 | 物资支持执行者执行活动 | 物资→执行者 |
4 | 产生/消耗 | 交叠关系 | 活动产生/消耗资源 | 活动→资源 |
5 | 隶属 | 整体部分关系 | 人员隶属某组织 | 人员→组织 |
6 | 编成 | 整体部分关系 | 装备体系编成装备系统 | 装备系统→装备系统 |
7 | 顺承 | 前后关系 | 某活动紧接着另一活动执行 | 活动→活动 |
8 | 并发 | 前后关系 | 某活动与另一活动同时发生 | 活动→活动 |
1 | 王博, 周文雅, 汪涛, 等. 多阶段任务装备体系作战能力评估[J]. 系统工程与电子技术, 2023, 45 (11): 3498- 3506. |
WANG B , ZHOU W Y , WANG T , et al. Operational capability evaluation of multi-phase mission equipment system[J]. Systems Engineering and Electronics, 2023, 45 (11): 3498- 3506. | |
2 | ZHENG X W, YU X, WEI S, et al. COVID19-OBKG: an ontology-based knowledge graph and web service for COVID19[C]//Proc. of the IEEE International Conference on Bioinformatics and Biomedicine, 2021: 2456-2462. |
3 | KOZAKI K, KUSHIDA T, YAMAMOTO Y, et al. Buliding knowledge graph across different subdomains using interlinking ontology for biomedical concepts[C]//Proc. of the Joint International Conference of Semantic Technology, 2019: 182-190. |
4 |
ANTONIAZZI F , VIOLA F . Building the semantic web of things through a dynamic ontology[J]. IEEE Internet of Things Journal, 2019, 6 (6): 10560- 10579.
doi: 10.1109/JIOT.2019.2939882 |
5 | 李肖, 刘德生. 面向武器装备体系知识图谱的本体构建[J]. 兵工自动化, 2022, 41 (3): 25- 41. |
LI X , LIU D S . Ontology construction for knowledge map of weapon equipment system[J]. Ordnance Indusry Automation, 2022, 41 (3): 25- 41. | |
6 | 周育伟, 杨朝宏, 王宏宇. 军事领域本体构建[J]. 计算机时代, 2022, 21 (9): 96- 99. |
ZHOU Y W , YANG C H , WANG H Y . Ontology construction of military field[J]. Computer Era, 2022, 21 (9): 96- 99. | |
7 | CHEN Z K, ZHAO Y. The technology of military knowledge graph construction based on multiple open data source[C]//Proc. of the 5th International Conference on Mechanical, Control and Computer Engineering, 2020: 1993-1997. |
8 | Department of Defense Architecture Framework Working Group. The Department of Defense Architecture Framework (DoDAF) Version 2.0[R]. Washington D.C. : Department of Defense, 2009. |
9 | United Kingdom Ministry of Defense. UK Ministry of Defense Framework (MoDAF) Version 1.2[R]. London: United Kingdom Ministry of Defense, 2008. |
10 | North Atlantic Treaty Organization Consultation Command and Control (C3) Board. The North Altlantic Treaty Organization (NATO) Architecture Framework Version 3.0[R]. Brussels: North Altlantic Treaty Organization, 2007. |
11 | TOGAF 9.2. The open group architecture framework[S]. UK: The Open Group, 2018. |
12 | Object Management Group. Unified architecture framework profile (UAFP) Version1.0[EB/OL]. [2023-05-01]. http://www.omg.org/spec/UAF/20170515/UAFP-Profile.xmi. |
13 |
KVSTER J M . Definition and validation of model transformation[J]. Software and System Modeling, 2006, 5 (3): 233- 259.
doi: 10.1007/s10270-006-0018-8 |
14 | Department of Defense Architecture Framework Working Group. DoD Architecture Framework Version2.02. Changel Volume3: Department of Defense Architecture Framework (DoDAF) meta-model ontology foundation and physical exchange specification[R]. Washington D.C. : Department of Defense, 2015. |
15 | 谢文才, 罗雪山, 罗爱民. 基于元模型的军事信息系统体系结构建模方法[J]. 国防科技大学学报, 2012, 34 (1): 82- 87. |
XIE W C , LUO X S , LUO A M . Meta-model based modeling of military information system architecture[J]. Journal of National University of Defense Technology, 2012, 34 (1): 82- 87. | |
16 |
谭贤四, 朱刚, 王红, 等. 基于IDEAS的联合论证元模型[J]. 系统工程与电子技术, 2015, 37 (1): 85- 92.
doi: 10.3969/j.issn.1001-506X.2015.01.15 |
TAN X S , ZHU G , WANG H , et al. Joint demonstration meta-model based on IDEAS[J]. Systems Engineering and Electronics, 2015, 37 (1): 85- 92.
doi: 10.3969/j.issn.1001-506X.2015.01.15 |
|
17 | LV H N, XIE J, LIU K. Research on the architecture of shipborne UAV target indication command and control system based on DoDAF[C]//Proc. of the 2nd International Conference on Computer Engineering and Intelligent Control, 2021: 162-171. |
18 |
高悦, 茹乐, 迟文升, 等. 基于体系结构设计的空战系统任务元模型建模[J]. 系统工程与电子技术, 2021, 43 (11): 3229- 3238.
doi: 10.12305/j.issn.1001-506X.2021.11.23 |
GAO Y , RU L , CHI W S , et al. Task meta-model modeling of air combat system based on system architecture design[J]. Systems Engineering and Electronics, 2021, 43 (11): 3229- 3238.
doi: 10.12305/j.issn.1001-506X.2021.11.23 |
|
19 | SINGHAL A . Introducing the knowledge graph: things, not strings[J]. Official Google Blog, 2016, 6 (9): 15- 22. |
20 | REN H , CHEN Z W , LIANG X J , et al. Association hierarchical representation learning for plant-wide process monitoring by using multilevel knowledge graph[J]. IEEE Trans.on Artificial Intelligence, 2023, 4 (4): 636- 649. |
21 | LU X Y , WANG L F , JIANG Z J , et al. MRE: a translational knowledge graph completion model based on multiple relation embedding[J]. Mathematical Biosciences and Engineering: MBE, 2023, 20 (3): 5481- 5900. |
22 | QI Y L , MAI G C , ZHU R , et al. EVKG: an interlinked and interoperable electric vehicle knowledge for smart transportation system[J]. Transactions in GIS, 2023, 27, 949- 974. |
23 | ZHOU B , SHEN X W , LI X Y , et al. Semantic-aware event link reasoning over industrial knowledge graph embedding time series data[J]. International Journal of Production Research, 2022, 61 (12): 4117- 4134. |
24 | DEBELLIS M , DUTTA B . From ontology to knowledge graph with agile methods: the case of COVID-19 CODO knowledge graph[J]. International Journal of Web Information Systems, 2022, 18 (5/6): 432- 452. |
25 | TAMAŠAUSKAITÉ G , GROTH P . Defining a knowledge graph development process through a systematic review[J]. ACM Transactions on Software Engineering and Methodology, 2022, 32 (1): 27. |
26 | HAO X J , JI Z , LI X H , et al. Construction and application of a Knowledge Graph[J]. Remote Sense, 2021, 13 (13): 2511. |
27 | DURÁN C K , MEDINA-RAMÍREZ R C , NIETO M A , et al. Process of building an educational and a military ontology for the Mexican context[J]. Research in Computing Science, 2019, 148 (5): 43- 50. |
28 | International Defense Enterprise Architecture Specification Group. International defense enterprise architecture specification[EB/OL]. [2023-05-10]. http://www.ideas-group.prg, 2011. |
29 | GHOSH S , SUNIL K C . A knowledge organization framework for influencing tourism-centered place-making[J]. Journal of Documentation, 2021, 78 (2): 157- 176. |
30 | SAAD M , ZHANG Y Z , TIAN J H , et al. A graph database for life cycle inventory using Neo4j[J]. Journal of Cleaner Production, 2023, 393, c136344. |
31 | YANG D S , LI Q , ZHU F H , et al. Parallel emergency management of incidents by integration OODA and PREA loops: the C2 mechanism and modes[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2023, 53 (4): 2160- 2172. |
[1] | Ruipeng LUAN, Jing ZHANG, Likun LIU. Knowledge graph ontology construction for data governance in equipment testing and indentification field [J]. Systems Engineering and Electronics, 2024, 46(3): 1013-1020. |
[2] | Linhu CONG, Yuqi CHEN, Liming CHEN, Yuliang CHEN, Chao WANG. Overall evaluation of mission success of SoS based on HDSPN [J]. Systems Engineering and Electronics, 2024, 46(2): 616-630. |
[3] | Lan MA, Shijun MENG, Zhijun WU. Intention mining for civil aviation radiotelephony communication based on BERT and generative adversarial [J]. Systems Engineering and Electronics, 2024, 46(2): 740-750. |
[4] | Zeyang JI, Chungang YANG, Fuqiang LI, Ying OUYANG, Xianglin LIU. Intent-driven network representation based on natural language processing [J]. Systems Engineering and Electronics, 2024, 46(1): 318-325. |
[5] | Haoliang REN, Jianchao ZHANG, Huichuan CHENG. Modeling and analysis method of weapon equipment system capability requirements based on SysML [J]. Systems Engineering and Electronics, 2023, 45(9): 2843-2851. |
[6] | Bin LIU, Jiacai YI, Li YAO, Yanjuan WANG, Zhaoyun DING, Xianqiang ZHU. Situational awareness ontology modeling for threat from space cyber operations [J]. Systems Engineering and Electronics, 2023, 45(3): 745-754. |
[7] | Tongxin LI, Weiping WANG, Tao WANG, Xiaobo LI. Strategic agent BDI model based on knowledge graph [J]. Systems Engineering and Electronics, 2023, 45(1): 119-126. |
[8] | Renjie XU, Lin GONG, Jian XIE, Xin LIU, Kewei YANG. Operation network link importance evaluation and recovery strategy based on equipment system-of-systems resilience [J]. Systems Engineering and Electronics, 2023, 45(1): 139-147. |
[9] | Yiyang LUO, Qingsong ZHAO, Huachao LI, Yong LI, Jianbin SUN. Framework and modeling method of weaponry utilization knowledge [J]. Systems Engineering and Electronics, 2022, 44(3): 841-849. |
[10] | Weijian PANG, Hui LI, Qian HUANG, Peng LI, Xianming MA. Review on ontology-based task planning for unmanned systems [J]. Systems Engineering and Electronics, 2022, 44(3): 908-920. |
[11] | Shuting WANG, Xiaobing LIU, Junhua ZHOU, Zhaoyang BAI, Xiang ZHAI. Ontology based knowledge representation and reuse method for complex product maintenance engineering cases [J]. Systems Engineering and Electronics, 2022, 44(2): 557-568. |
[12] | Depeng KONG, Yiqing MA, Baohua ZHENG, Qi WANG, Zhiqiang ZHANG, Zhenqiang ZHAO. Contribution rate assessment method of maritime joint operations equipment system of systems for uncertain multi-mission scenes [J]. Systems Engineering and Electronics, 2022, 44(12): 3775-3782. |
[13] | Tiejun JIANG, Chun YU, Chengjie ZHOU. Fleet level repair plan optimization considering expected system effectiveness attenuation [J]. Systems Engineering and Electronics, 2022, 44(11): 3571-3578. |
[14] | Qihong CHEN, Qingsong ZHAO, Wei QIU, Jia CHEN. Demonstration method of weapon equipment system development planning based on dynamic game [J]. Systems Engineering and Electronics, 2022, 44(10): 3124-3133. |
[15] | Yufeng MA, Nan XIANG, Yajie DOU, Jiang JIANG, Kewei YANG, Yuejin TAN. Application and research of knowledge graph in military system engineering [J]. Systems Engineering and Electronics, 2022, 44(1): 146-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||