Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 740-750.doi: 10.12305/j.issn.1001-506X.2024.02.38
• Communications and Networks • Previous Articles
Lan MA1,*, Shijun MENG2, Zhijun WU3
Received:
2022-12-05
Online:
2024-01-25
Published:
2024-02-06
Contact:
Lan MA
CLC Number:
Lan MA, Shijun MENG, Zhijun WU. Intention mining for civil aviation radiotelephony communication based on BERT and generative adversarial[J]. Systems Engineering and Electronics, 2024, 46(2): 740-750.
Table 9
Recognition results of GAN+BERT-BiLSTM-CRF model with fused ontology on various types of intent labels %"
意图类别 | GAN+BERT-BiLSTM-CRF模型 | ||
P/% | R/% | F1/% | |
COD | 96.97 | 100.00 | 98.46 |
WPV | 100.00 | 100.00 | 100.00 |
VCI | 98.70 | 93.83 | 96.20 |
TII | 98.85 | 97.64 | 98.25 |
RTF | 99.20 | 99.60 | 99.40 |
LEV | 98.73 | 96.30 | 97.50 |
HDV | 98.82 | 97.67 | 98.25 |
SPV | 100.00 | 97.83 | 98.90 |
LOC | 99.55 | 99.79 | 99.67 |
CUN | 99.24 | 98.48 | 98.86 |
RUN | 99.49 | 100.00 | 99.75 |
QNH | 100.00 | 100.00 | 100.00 |
UNI | 100.00 | 100.00 | 100.00 |
ADP | 98.48 | 97.01 | 97.74 |
WEI | 100.00 | 100.00 | 100.00 |
CAL | 99.49 | 99.75 | 99.62 |
SCI | 98.47 | 94.59 | 96.49 |
HCI | 100.00 | 96.83 | 98.39 |
TOC | 99.60 | 97.30 | 98.44 |
RCI | 100.00 | 95.65 | 97.78 |
1 | ZULUAGA G J , VESELY K , BLATT A , et al. Automatic call sign detection: matching air surveillance data with air traffic spoken communications[J]. Multidisciplinary Digital Publishing Institute Proceedings, 2020, 59 (1): 14. |
2 | HELMKE H, KLEINERT M, OHNEISER O, et al. Machine learning of air traffic controller command extraction models for speech recognition applications[C]//Proc. of the AIAA/IEEE 39th Digital Avionics Systems Conference, 2020. |
3 | ZULUAGA G J, SARFGOO S S, PRASAD A, et al. BERTraffic: a robust BERT-based approach for speaker change detection and role identification of air-traffic communications[EB/OL]. [2022-11-05]. https:doi.org/10.48550/arxiv.2110.05781. |
4 |
GUIMIN J I A , JUNXIAN L I . A novel strategy for fine-grained semantic verification of civil aviation radiotelephony read-backs[J]. Chinese Journal of Aeronautics, 2022, 35 (12): 266- 277.
doi: 10.1016/j.cja.2022.05.005 |
5 | HELMKE H, SLOTTY M, POIGER M, et al. Ontology for transcription of ATC speech commands of SESAR 2020 solution PJ. 16-04[C]//Proc. of the IEEE/AIAA 37th Digital Avionics Systems Conference, 2018. |
6 |
LI J , SUN A X , HAN J L , et al. A survey on deep learning for named entity recognition[J]. IEEE Trans. on Knowledge and Data Engineering, 2022, 34 (1): 50- 70.
doi: 10.1109/TKDE.2020.2981314 |
7 | SUTSKEVER I, MARTENS J, HINTON G E. Generating text with recurrent neural networks[C]//Proc. of the 28th International Conference on Machine Learning, 2011: 1017-1024. |
8 | BENGIO S, VINYALS O, JAITLY N, et al. Scheduled sampling for sequence prediction with recurrent neural networks[EB/OL]. [2015-09-23]. https://arxiv.org/abs/1506.03099. |
9 | KOO S. Automatic colorization with deep convolutional generative adversarial networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 212-217. |
10 | ZHANG Y Z, GAN Z, FAN K, et al. Adversarial feature matching for text generation[C]//Proc. of the International Conference on Machine Learning, 2017, 70: 4006-4015. |
11 | YU L T, ZHANG W N, WANG J, et al. Seqgan: sequence generative adversarial nets with policy gradient[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2017: 2852-2858. |
12 | CHE T, LI Y R, ZHANG R X, et al. Maximum-likelihood augmented discrete generative adversarial networks[EB/OL]. [2022-11-30]. https:dio.org/10.48550/arxiv.1702.07983. |
13 | LI J W, MONROE W, SHI T L, et al. Adversarial learning for neural dialogue generation[C]//Proc. of Conference on Empirical Methods in Natural Language Processing, 2017: 2157-2169. |
14 | GUO J X, LU S D, CAI H, et al. Long text generation via adversarial training with leaked information[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2018. |
15 |
KIM S , YOON B . Multi-document summarization for patent documents based on generative adversarial network[J]. Expert Systems with Applications, 2022, 207, 117983.
doi: 10.1016/j.eswa.2022.117983 |
16 |
SHAHRIAR S . GAN computers generate arts? A survey on visual arts, music, and literary text generation using generative adversarial network[J]. Displays, 2022, 73, 102237.
doi: 10.1016/j.displa.2022.102237 |
17 | 邱意, 赵子豪, 李丹, 等. 基于GAN的民航陆空通话文本生成方法[J]. 计算机科学与应用, 2018, 8 (12): 1870- 1877. |
QIU Y , ZHAO Z H , LI D , et al. Text generation in civil aviation radiotelephony communication using generative adversarial network[J]. Computer Science and Application, 2018, 8 (12): 1870- 1877. | |
18 |
WIMALASURIYA D C , DOU D . Ontology-based information extraction: an introduction and a survey of current approaches[J]. Journal of Information Science, 2010, 36 (3): 306- 323.
doi: 10.1177/0165551509360123 |
19 | CHANG J , HAN X T . Multi-level context features extraction for named entity recognition[J]. Computer Speech & Language, 2023, 77, 101412. |
20 | 邓学鸣. 基于Python正则表达式的管制指令匹配与提取[J]. 数字通信世界, 2019, (5): 13- 14. |
DENG X M . Control command matching and extraction based on Python regular expressions[J]. Digital Communication World, 2019, (5): 13- 14. | |
21 | 杨昱昕. 基于自然语义提取的空中交通辅助决策方法研究[D]. 南京: 南京航空航天大学, 2018. |
YANG Y X. Research on air traffic decision-making method based on extraction of natural semanteme[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. | |
22 | 王煊, 盛寅, 丁辉, 等. 一种基于自然语言处理的结构化管制指令提取方法[P]. 中国: CN109460547A, 2019.03.12. |
WANG X, SHENG Y, DING H, et al. A structured control instruction extraction method based on natural language processing[P]. China: CN109460547A, 2019.03.12. | |
23 |
LIU K J , GOHARY N E . Ontology-based semi-supervised conditional random fields for automated information extraction from bridge inspection reports[J]. Automation in Construction, 2017, 81, 313- 327.
doi: 10.1016/j.autcon.2017.02.003 |
24 | CHENG J R , LIU J X , XU X B , et al. A review of chinese named entity recognition[J]. KSII Trans. on Internet & Information Systems, 2021, 15 (6): 2012- 2031. |
25 | LIU C , YANG S W . Using text mining to establish knowledge graph from accident/incident reports in risk assessment[J]. Expert Systems with Applications, 2022, 207 (11): 117991. |
26 |
LUO R Q , SUN L A , XIA Y C , et al. BioGPT: generative pre-trained transformer for biomedical text generation and mining[J]. Briefings in Bioinformatics, 2022, 23 (6): 409.
doi: 10.1093/bib/bbac409 |
27 |
LIN Y , TAN X L , YANG B , et al. Real-time controlling dynamics sensing in air traffic system[J]. Sensors, 2019, 19 (3): 679.
doi: 10.3390/s19030679 |
28 | LIN Y , DENG L J , CHEN Z M , et al. A real-time ATC safety monitoring framework using a deep learning approach[J]. IEEE Trans. on Intelligent Transportation Systems, 2019, 21 (11): 4572- 4581. |
29 | 张兴明. 基于深度学习的地空通信文本命名实体识别研究[J]. 现代计算机, 2021, (2): 28- 33. |
ZHANG X M . A study of named entity recognition for radiotelephony communication text based on deep learning[J]. Modern Computer, 2021, (2): 28- 33. | |
30 | KOCOUR M , VESELY K , SZOKE I , et al. Automatic processing pipeline for collecting and annotating air-traffic voice communication data[J]. Engineering Proceedings, 2021, 13 (1): 8- 18. |
31 | 段立, 封皓君, 张碧莹, 等. 融合语义路径与语言模型的元学习知识推理框架[J]. 电子与信息学报, 2022, 44 (12): 4376- 4383. |
DUAN L , FENG H J , ZHANG B Y , et al. A meta-learning knowledge reasoning framework combining semantic path and language model[J]. Journal of Electronics & Information Technology, 2022, 44 (12): 4376- 4383. | |
32 | 刘磊. 基于生成式对抗网络与异质集成学习的文本情感分类研究[D]. 南京: 南京邮电大学, 2020. |
LIU L. Research on text sentiment classfication based on gene-rative adversarial network and heterogenous ensemble learning[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. | |
33 | HU X , CHU L Y , PEI J , et al. Model complexity of deep learning: a survey[J]. Knowledge and Information Systems, 2021, 63 (2): 2585- 2619. |
[1] | Shiyan PANG, Jingjing HAO, Lining XING, Xu TAN. Weakly supervised domain adaptation algorithm for building extraction from remote sensing images [J]. Systems Engineering and Electronics, 2023, 45(6): 1616-1623. |
[2] | Li CHEN, Zihan FANG, Liquan MEI. DSS signal generation algorithm based on GAN [J]. Systems Engineering and Electronics, 2023, 45(5): 1544-1552. |
[3] | Bin LIU, Jiacai YI, Li YAO, Yanjuan WANG, Zhaoyun DING, Xianqiang ZHU. Situational awareness ontology modeling for threat from space cyber operations [J]. Systems Engineering and Electronics, 2023, 45(3): 745-754. |
[4] | Haoran ZENG, Yunwen FENG, Cheng LU, Weihuang PAN. Spare parts consumption forecast method based on improved generative adversarial network for domestic civil aircraft [J]. Systems Engineering and Electronics, 2023, 45(10): 3132-3138. |
[5] | Bowei QIN, Lei JIANG, Hua XU, Weiyu NIU. Open-set recognition algorithm for modulation signal based on RE-GAN [J]. Systems Engineering and Electronics, 2023, 45(10): 3321-3328. |
[6] | Rongxiang LIU, Lin WU, Zhige XIE, Honglin LIU. Auxiliary situation analysis for air defense system based on generative adversarial network [J]. Systems Engineering and Electronics, 2022, 44(8): 2522-2529. |
[7] | Ruilin XU, Boying GENG, Shukan LIU. Research on structural knowledge extraction and organization for multi-modal governmental documents [J]. Systems Engineering and Electronics, 2022, 44(7): 2241-2250. |
[8] | Yiyang LUO, Qingsong ZHAO, Huachao LI, Yong LI, Jianbin SUN. Framework and modeling method of weaponry utilization knowledge [J]. Systems Engineering and Electronics, 2022, 44(3): 841-849. |
[9] | Weijian PANG, Hui LI, Qian HUANG, Peng LI, Xianming MA. Review on ontology-based task planning for unmanned systems [J]. Systems Engineering and Electronics, 2022, 44(3): 908-920. |
[10] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[11] | Shuting WANG, Xiaobing LIU, Junhua ZHOU, Zhaoyang BAI, Xiang ZHAI. Ontology based knowledge representation and reuse method for complex product maintenance engineering cases [J]. Systems Engineering and Electronics, 2022, 44(2): 557-568. |
[12] | Xue SUN, Zhiqiu HUANG, Guohua SHEN, Jinyong WANG, Heng XU. Behavior decision method of autonomous vehicle based on ontology and BN [J]. Systems Engineering and Electronics, 2021, 43(2): 452-465. |
[13] | HE Hongyue, WANG Zhixue, LIANG Haomo, WANG Qinglong. Approach to mission modeling and analysis for system of systems based on ontology [J]. Systems Engineering and Electronics, 2018, 40(9): 1973-1978. |
[14] | CHENG Kai, CHEN Gang, YIN Chengxiang, KANG Ruizhi, KANG Xingdang. Core ontology modeling and reasoning method for course of action [J]. Systems Engineering and Electronics, 2018, 40(4): 805-814. |
[15] | SUN Yufei, MA Liangli, LV Minhui, QIN Jiwei. Improved co-training based ontology matching method [J]. Systems Engineering and Electronics, 2017, 39(2): 459-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||