Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (8): 1740-1750.doi: 10.3969/j.issn.1001-506X.2020.08.14
Previous Articles Next Articles
Xuan ZHOU1(), Feng HE1,*(
), Xiaoyan GU2(
), Zirui JIA2(
), Huagang XIONG1(
)
Received:
2019-12-23
Online:
2020-07-25
Published:
2020-07-27
Contact:
Feng HE
E-mail:lomoo@buaa.edu.cn;fenghe@buaa.edu.cn;xiaoyangu@bistu.edu.cn;jzr@mail.bistu.edu.cn;hgxiong@buaa.edu.cn
Supported by:
CLC Number:
Xuan ZHOU, Feng HE, Xiaoyan GU, Zirui JIA, Huagang XIONG. Dynamic comprehensive evaluation with weight evolution forsystem contribution rate of avionics systems[J]. Systems Engineering and Electronics, 2020, 42(8): 1740-1750.
Table 2
Experimental configuration of indicator inherent property and specific operational requirement in avionics system"
指标名称 | ID | P | Rideal | Rworst |
通信容量/Mbps | 1 | 52 | 100 | 10 |
覆盖范围/km | 2 | 27 | 35 | 10 |
传输延迟/ms | 3 | 4 | 1 | 10 |
误码率 | 4 | 2e-7 | e-8 | e-9 |
节点发现时间/s | 5 | 14 | 10 | 20 |
网络规划时间/s | 6 | 9 | 5 | 15 |
抗干扰性/% | 7 | 80 | 95 | 60 |
抗截获性/% | 8 | 78 | 95 | 70 |
抗窃听性/% | 9 | 74 | 95 | 65 |
位置精度/m | 10 | 31 | 10 | 100 |
速度精度/(m/s) | 11 | 0.18 | 0.1 | 0.25 |
航向精度/(°) | 12 | 1.6 | 1 | 2.5 |
航线规划时间/s | 13 | 11 | 5 | 15 |
横向航迹偏差/% | 14 | 6 | 4 | 10 |
测距精度/m | 15 | 2 | 0.15 | 5 |
测速精度/(m/s) | 16 | 2.3 | 1 | 3 |
测角精度/(°) | 17 | 0.8 | 0.5 | 1 |
轨迹预测一致性/% | 18 | 85 | 95 | 70 |
位置预测精确度/% | 19 | 82 | 98 | 70 |
敌我属性准确度/% | 20 | 90 | 98 | 80 |
目标类型准确度/% | 21 | 86 | 95 | 75 |
虚警概率/% | 22 | 0.18 | 0.05 | 0.3 |
漏警概率/% | 23 | 0.33 | 0.09 | 0.6 |
失锁捕获时间/frame | 24 | 36 | 20 | 50 |
干扰成功率/% | 25 | 45 | 70 | 20 |
决策指挥时间/s | 26 | 8 | 5 | 10 |
数据融合程度/level | 27 | 4 | 5 | 2 |
体系结构通用性/level | 28 | 3 | 3 | 1 |
飞行操纵自主性/level | 29 | 2 | 4 | 1 |
显示输出时延/ms | 30 | 264 | 150 | 370 |
指令输入识别率/% | 31 | 95 | 98 | 90 |
调度派发合理性/% | 32 | 84 | 95 | 75 |
性能降级鲁棒性/% | 33 | 78 | 90 | 65 |
设备配置冗余度/copy | 34 | 2 | 3 | 1 |
故障预测及时性/% | 35 | 77 | 85 | 70 |
寿命预测准确度/% | 36 | 59 | 80 | 50 |
Table 3
Grey correlation and corresponding time weight from stage1 to stage3"
参数指标 | stage1 | stage2 | stage3 |
γ | 0.893 9 | 0.897 1 | 0.839 6 |
ζSS | 0 | 0 | 1 |
ζEDC0.2 | 0.087 6 | 0.224 8 | 0.687 6 |
ζEDC0.3 | 0.141 8 | 0.316 4 | 0.541 8 |
ζEDC0.4 | 0.231 6 | 0.336 8 | 0.431 6 |
ζDC | 0.370 6 | 0.371 7 | 0.257 7 |
ζIDC | 0.326 3 | 0.325 5 | 0.348 2 |
1 | 张先超, 马亚辉. 体系能力模型与装备体系贡献率测度方法[J]. 系统工程与电子技术, 2019, 41 (4): 843- 849. |
ZHANG X C , MA Y H . Capability model of combat system of systems and measurement method of armament contribution to combat system of systems[J]. Systems Engineering and Electronics, 2019, 41 (4): 843- 849. | |
2 | 刘鹏, 赵丹玲, 谭跃进, 等. 面向多任务的武器装备体系贡献度评估方法[J]. 系统工程与电子技术, 2019, 41 (8): 1763- 1770. |
LIU P , ZHAO D L , TAN Y J , et al. Multi-task oriented contribution evaluation method of weapon equipment system of systems[J]. Systems Engineering and Electronics, 2019, 41 (8): 1763- 1770. | |
3 | 林木, 李小波, 王彦锋, 等. 基于QFD和组合赋权TOPSIS的体系贡献率能效评估[J]. 系统工程与电子技术, 2019, 41 (8): 1802- 1809. |
LIN M , LI X B , WANG Y F , et al. Capability effectiveness evaluation of contribution ratio to system-of-systems based on QFD and combination weights TOPSIS[J]. Systems Engineering and Electronics, 2019, 41 (8): 1802- 1809. | |
4 | 游雅倩, 姜江, 孙建彬, 等. 基于证据网络的装备体系贡献率评估方法研究[J]. 系统工程与电子技术, 2019, 41 (8): 1780- 1788. |
YOU Y Q , JIANG J , SUN J B , et al. Evidential network-based evaluation method of contribution to weapon system-of-systems[J]. Systems Engineering and Electronics, 2019, 41 (8): 1780- 1788. | |
5 | PEI D, QIN D G. Evaluation of contribution rate of weapon equipment system of systems capability based on conditional evi dential network[C]//Proc.of the 8th IEEE International Conference on Software Engineering and Ser vice Science, 2017: 459-463. |
6 | YANG H D, LIU F, YAN Y D. A new perspective on evaluation software of contribution rate for weapon equipment system[C]//Proc.of the International Conference on Geo-Spatial Knowledge and Intellig ence, 2017: 305-312. |
7 | SONG J H, LI L, GUO Q S, et al. System contribution rate assessment methods[C]//Proc.of the 2nd international conference on Computer, mechatronics and Engineering, 2017: 806-811 |
8 | 姚天乐, 胡起伟, 齐子元, 等. 基于软计算的轻武器装备体系贡献率评估方法[J]. 兵工学报, 2019, 40 (5): 938- 945. |
YAO T L , HU Q W , QI Z Y , et al. Soft computing-based assessment method of contribution rate of small arms and equipment system[J]. Acta Armamentarii, 2019, 40 (5): 938- 945. | |
9 | 陈文英, 张兵志, 史力晨, 等. 新型智能装甲作战系统体系贡献率评估研究[J]. 兵工学报, 2018, 39 (9): 1841- 1849. |
CHEN W Y , ZHANG B Z , SHI L C , et al. Research on evaluation of contribution rate of a new intelligent armoured combat system to army weapon system-of-systems[J]. Acta Armamentarii, 2018, 39 (9): 1841- 1849. | |
10 | LYU H W, ZHANG W. System contribution rate evaluation of the equipment system based on rough set and neural network[C]//Proc.of the International Conference on Computer Science and Artificial Intelligence, 2017: 234. |
11 | 管东林, 吴鑫辉, 常歌. 基于模糊层次分析的舰艇编队信息系统体系贡献率评估[J]. 指挥控制与仿真, 2019, 41 (3): 122- 127. |
GUAN D L , WU X H , CHANG G . Contribution ratio evaluation for naval battle group information system base d on Fuzzy-AHP method[J]. Command Control & Simulation, 2019, 41 (3): 122- 127. | |
12 | 李崑, 彭洁, 宋爽. 通信装备作战试验评估指标体系研究[J]. 通信技术, 2018, 51 (7): 1649- 1655. |
LI K , PENG J , SONG S . Evaluation index system of communication equipment operation test[J]. Communications Technology, 2018, 51 (7): 1649- 1655. | |
13 | 周浩, 戴国忠. 指挥信息系统体系贡献度指标体系[J]. 指挥信息系统与技术, 2018, 9 (5): 68- 73. |
ZHOU H , DAI G Z . System-of-systems contribution indicators system of command information system[J]. Command Information System and Technology, 2018, 9 (5): 68- 73. | |
14 | 王涛, 汪刘应, 常雷雷, 等. 基于作战环的导弹作战体系效能动态评估[J]. 现代防御技术, 2019, 47 (3): 42- 49. |
WANG T , WANG L Y , CHANG L L , et al. Dynamic evaluation of missile combat system effectiveness based on operation loop[J]. Modern Defense Technology, 2019, 47 (3): 42- 49. | |
15 | 昝翔, 陈春良, 张仕新, 等. 考虑权重演化的装备重要度动态评估方法[J]. 系统工程与电子技术, 2017, 39 (9): 2022- 2030. |
ZAN X , CHEN C L , ZHANG S X , et al. Dynamic evaluation method for equipment important degree consi dering weight-evolving[J]. Systems Engineering and Electronics, 2017, 39 (9): 2022- 2030. | |
16 | LIU W W , SHI C S , LI J . Evaluation matrix with the speed feature based on double inspiriting control lines[J]. Journal of Systems Engineering and Electronics, 2013, 24 (6): 962- 970. |
17 | 王翯华, 朱建军, 方志耕. 基于灰色关联度的多阶段语言评价信息集结方法[J]. 控制与决策, 2013, 28 (1): 109- 114. |
WANG H H , ZHU J J , FANG Z G . Aggregation of multi-stage linguistic evaluation information based on grey incidence degree[J]. Control and Decision, 2013, 28 (1): 109- 114. | |
18 | ZHU Y N , LI L , ZHAO Y , et al. Regional comprehensive drought disaster risk dynamic evaluation based on projection pursuit clustering[J]. Water Policy, 2018, 20 (2): 410- 428. |
19 | TIAN Y J , LI Z . Panel data based dynamic evaluation of agricultural resource utilization efficiency: a case study of hebei province[J]. Asian Agricultural Research, 2013, 5 (4): 58- 59, 62. |
20 |
HU W , GUO Q T , ZHOU Y F , et al. Dynamic comprehensive methodology for assessing power development level based on provincial data[J]. CSEE Journal of Power and Energy Systems, 2018.
doi: 10.17775/CSEEJPES.2018.00910 |
21 | ZHANG Z Y, XU W J, LIU Q, et al. Dynamic manufacturing capability assessment of industrial robots based on feedback information in cloud manufacturing[C]//Proc.of the 12th Inter national Manufacturing Science and Engineering Conference collocated with the JSME, 2017. |
22 | LI P , ZHANG J S , XU J , et al. A dynamic approach to mea-suring China's provincial energy supply security along "the Belt and Road"[J]. Mathematical Problems in Engineering, 2018, 2018, 3605024. |
23 | 杨锴, 赵希男, 周岩. 考虑二次优势判别的动态竞优评价方法及应用[J]. 运筹与管理, 2019, 28 (3): 139- 147. |
YANG K , ZHAO X N , ZHOU Y . A dynamic evaluation method and application on better action conforming to natural rules considering twice identification of advantage[J]. Operations Research and Management Science, 2019, 28 (3): 139- 147. | |
24 | KOU G , ERGU D , SHI Y . An integrated expert system for fast disaster assessment[J]. Computers & Operations Research, 2014, 42, 95- 107. |
25 | 罗承昆, 陈云翔, 项华春, 等. 装备体系贡献率评估方法研究综述[J]. 系统工程与电子技术, 2019, 41 (8): 1789- 1794. |
LUO C K , CHEN Y X , XIANG H C , et al. Review of the evaluation methods of equipment's contribution rate to system-of-systems[J]. Systems Engin eering and Electronics, 2019, 41 (8): 1789- 1794. | |
26 | 杨克巍, 杨志伟, 谭跃进, 等. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41 (2): 311- 321. |
YANG K W , YANG Z W , TAN Y J , et al. Review of the evaluation methods of equipment system of systems facing the contribution rate[J]. Systems Engineering and Electronics, 2019, 41 (2): 311- 321. | |
27 | 陈小卫, 张军奇, 杨永志. 新研装备体系贡献率度量方法分析[J]. 兵器装备工程学报, 2018, 39 (4): 19- 22. |
CHEN X W , ZHANG J Q , YANG Y Z . Analysis on measurement methods of new equipment system-of-systems contribution[J]. Journal of Sichuan Ordnance, 2018, 39 (4): 19- 22. | |
28 | JIANG J , LI X , ZHOU Z , et al. Weapon system capability assessment under uncertainty based on the evidential reasoning approach[J]. Expert Systems with Applications, 2011, 38 (11): 13773- 13784. |
29 | LI J C, FU C X, CHEN Y W, et al. An operational efficiency evaluation method for weapon system-of-systems combat networks based on operation loop[C]//Proc.of the 9th International Conference on System of Systems Engineering, 2014: 219-223. |
30 | XIA W, LIU X X, MENG S F, et al. Efficiency evaluation research of missile weapon system based on the ADC-model[C]//Proc.of the 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer, 2016. |
31 | 卜广志. 武器装备体系的体系结构与体系效能[J]. 系统工程与电子技术, 2006, 28 (10): 1544- 1548. |
PU G Z . Study on the architecture and effectiveness for armament systems[J]. Systems Engineering and Electronics, 2006, 28 (10): 1544- 1548. | |
32 | 张博孜, 张国忠, 常华耀. 武器装备体系贡献度评估问题研究[J]. 计算机仿真, 2018, 35 (2): 397- 401. |
ZHANG B Z , ZHANG G Z , CHANG H Y . Problem of contribution evaluation of weapon system of systems[J]. Computer Simulation, 2018, 35 (2): 397- 401. | |
33 | 彭耿, 周少平, 张绪明, 等. 武器装备体系贡献率计算方法[J]. 火力与指挥控制, 2019, 44 (4): 33- 36, 43. |
PENG G , ZHOU S P , ZHANG X M , et al. Contribution rate calculation of weapon system[J]. Fire Control & Command Control, 2019, 44 (4): 33- 36, 43. | |
34 | 李振, 李峭, 熊华钢. 基于使命任务分解的航空电子跨平台通信组织与仿真[J]. 航空电子技术, 2015, 46 (1): 10- 14. |
LI Z , LI Q , XIONG H G . Organization and simulation of cross-platform communication of avionics based on mission decomposition[J]. Avionics Technology, 2015, 46 (1): 10- 14. | |
35 | 熊华钢, 王中华. 先进航空电子综合技术[M]. 北京: 国防工业出版社, 2009. |
XIONG H G , WANG Z H . Advanced avionics integrtion techniques[M]. Beijing: National Defense Industry Press, 2019. | |
36 | LIU T S, MENG Y L, WANG G Q. Effectiveness evaluation algorithm of integrated avionics system based on improved AHP method[C]//Proc.of the International Conference on Advanced Control, Automation and Robotics, 2014: 14. |
37 | PENG Y , CHU J G , XUE Z C . Basin flood control system risk evaluation based on variable sets[J]. Science China Technological Sciences, 2017, 60 (1): 153- 165. |
[1] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[2] | Junlong LI, Songzhou LI, Di ZHOU. Optimization method for three-impulse rendezvous under multi-constraints [J]. Systems Engineering and Electronics, 2022, 44(8): 2612-2620. |
[3] | Lu ZHUANG, Zhong LU, Haijing SONG, Jia ZHOU. An optimization method for development assurance level assignment of airborne system [J]. Systems Engineering and Electronics, 2022, 44(8): 2688-2698. |
[4] | Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. Unknown radar signal processing based on PSO-DBSCAN and SCGAN [J]. Systems Engineering and Electronics, 2022, 44(4): 1158-1165. |
[5] | Siyu DU, Yinghui QUAN, Minghui SHA, Wen FANG, Mengdao XING. Waveform optimization for SFA radar based on evolutionary particle swarm optimization [J]. Systems Engineering and Electronics, 2022, 44(3): 834-840. |
[6] | Chenrui SHI, Lu TIAN, Zhan XU, Ruxin ZHI, Jinhui CHEN. Effectiveness evaluation method of emergency communication and sensing equipment based on PSO-BP [J]. Systems Engineering and Electronics, 2022, 44(11): 3455-3462. |
[7] | Fuyu LU, Ningning TONG, Weike FENG, Pengcheng WAN. Adaptive hybrid annealing particle swarm optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(11): 3470-3476. |
[8] | Haoyang LI, Jianjun XIANG, Fang PENG, Shuai WANG, Zhijun LI. Beam space generalized sidelobe canceller algorithm based on particle swarm optimization [J]. Systems Engineering and Electronics, 2022, 44(10): 3037-3045. |
[9] | Peng WANG, Jiachen LIU, Lei DOND, Changxiao ZHAO. Task oriented DIMA dynamic reconfiguration strategy for civil aircraft [J]. Systems Engineering and Electronics, 2021, 43(6): 1618-1627. |
[10] | Lei XIE, Dali DING, Zhenglei WEI, Andi TANG, Peng ZHANG. Real time prediction of maneuver trajectory for AdaBoost-PSO-LSTM network [J]. Systems Engineering and Electronics, 2021, 43(6): 1651-1658. |
[11] | Kun WANG, Shuxian HOU, Li WANG. APU performance parameter prediction model based on adaptive variation PSO-SVM [J]. Systems Engineering and Electronics, 2021, 43(2): 526-536. |
[12] | Shuai ZHAO, Songtao LIU, Huiyang WANG. LPI radar waveform recognition algorithm based on PSO-CNN [J]. Systems Engineering and Electronics, 2021, 43(12): 3552-3563. |
[13] | Han LI, Honghai ZHANG, Liandong ZHANG, Hao LIU. Multiple logistics unmanned aerial vehicle collaborative task allocation in urban areas [J]. Systems Engineering and Electronics, 2021, 43(12): 3594-3602. |
[14] | Xiaohai WANG, Xiuyun MENG, Chuanxu LI. Design of trajectory tracking controller for UAV based on MPC [J]. Systems Engineering and Electronics, 2021, 43(1): 191-198. |
[15] | Chunrong HE, Jiang ZHU. Security situation prediction method of GRU neural network [J]. Systems Engineering and Electronics, 2021, 43(1): 258-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||