Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (8): 2530-2539.doi: 10.12305/j.issn.1001-506X.2022.08.18
• Systems Engineering • Previous Articles Next Articles
Jianfeng YANG1,2, Heye XIAO3, Liang LI2, Junqiang BAI3,*, Weihao DONG2
Received:
2021-07-05
Online:
2022-08-01
Published:
2022-08-24
Contact:
Junqiang BAI
CLC Number:
Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism[J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539.
Table 1
Correlation factors of unmanned aerial vehicle modules"
关联度 | 功能相关性∂f(i, j) | 结构相关性∂s(i, j) | 电气相关性∂e(i, j) | 保障相关性∂g(i, j) |
0.7~0.9 | 共同完成缺一不可 | 需特殊工具拆装的固定连接, 或零部件间存在高精度的形位要求 | 有能量、数据流通 | 保障条件一致 |
0.4~0.6 | 辅助功能关系强 | 可拆固定连接, 或存在粗精度的形位要求 | 有数据、无能量流通 | 保障条件相近 |
0.1~0.3 | 辅助功能关系中 | 可拆活动连接 | 有能量、无数据流通 | 保障条件部分相近 |
0 | 无功能相关或很弱 | 无结构连接 | 无能量、数据流通 | 保障条件完全不同 |
Table 6
Main components of reusable unmanned aerial vehicle"
序号 | 零部件名称 | 序号 | 零部件名称 | |
1 | 机身 | 20 | 桨夹 | |
2 | 主翼 | 21 | 桨叶 | |
3 | 副翼 | 22 | 发电机 | |
4 | 进气道 | 23 | 舵电机2 | |
5 | 主尾翼 | 24 | 可调电位器2 | |
6 | 舵面 | 25 | 齿轮传动装置2 | |
7 | 主控单元 | 26 | 遥控接收机 | |
8 | 3轴加速度计 | 27 | 卫星通讯组件 | |
9 | 3轴角速度计 | 28 | GNSS接收机 | |
10 | 气压高度计 | 29 | GPS天线 | |
11 | 空速管 | 30 | 电池 | |
12 | 数据处理单元 | 31 | 电源管理板 | |
13 | 舵电机1 | 32 | 数据链端机 | |
14 | 可调电位器1 | 33 | 数据链天线 | |
15 | 齿轮传动装置1 | 34 | 航拍组件 | |
16 | 转子发动机 | 35 | 合成孔径雷达 | |
17 | 油泵 | 36 | 激光测距仪 | |
18 | 主油箱 | 37 | 起落架 | |
19 | 副油箱 | - | - |
Table 7
Domestic and foreign modular unmanned aerial vehicle division comparison table"
序号 | 无人机 | 模块组成 | 来源 | ||||||
1 | 一次性使用无人机 | 结构模块 | 飞控模块 | 推进模块 | 电源模块 | 载荷模块 | 控制执行模块 | 安全模块 | 本文 |
2 | 可重复使用无人机 | 结构模块 | 飞控模块 | 推进模块 | 电源与通信模块 | 载荷模块 | 控制执行模块 | — | 本文 |
3 | 模块化多旋翼无人机平台 | 结构模块 | 控制模块 | 推进模块 | 能量模块 | 载荷模块 | — | — | 文献[ |
4 | 150 kg垂直起降无人机 | 结构模块 | 航电模块 | 推进模块 | 燃油模块 | 载荷模块 | 安全模块 | — | 文献[ |
5 | 低空长航时无人机 | 机体模块 | 飞控模块 | 动力与能源模块 | — | 载荷模块 | — | — | 文献[ |
6 | 新型无人机消防救援系统 | 结构模块 | 飞控模块 | — | 信息采集传输模块 | 载荷模块 | — | — | 文献[ |
1 |
焦士俊, 王冰切, 刘剑豪, 等. 国内外无人机蜂群研究现状综述[J]. 航天电子对抗, 2019, 35 (1): 61- 64.
doi: 10.3969/j.issn.1673-2421.2019.01.014 |
JIAO S J , WANG B Q , LIU J H , et al. Review of drone swarm research at home and abroad[J]. Aerospace Electronic Warfare, 2019, 35 (1): 61- 64.
doi: 10.3969/j.issn.1673-2421.2019.01.014 |
|
2 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41 (4): 20- 45. |
WANG X K , LIU Z H , CONG Y R , et al. Miniature fixed-wing UAV swarms: review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (4): 20- 45. | |
3 |
GU Q Q , MICHANOWICZ D R , JIA C R . Developing a modular unmanned aerial vehicle (UAV) platform for air pollution profiling[J]. Sensors, 2018, 18 (12): 4363.
doi: 10.3390/s18124363 |
4 | HERBERT S . The architecture of complexity[J]. Proceedings of the American Philosophical Society, 1962, 106 (6): 467- 482. |
5 | ALEXANDER C . Notes on the synthesis of form[M]. London: Harvard University Press, 1964. |
6 | RINAUTO B, GUPTA S, MALDONADO V, et al. Design of a modular offline reconfigurable unmanned aerial vehicle (UAV)[C]// Proc. of the AIAA Information Systems-Infotech at Aerospace Conference, 2017. |
7 | 李春鹏, 张铁军, 钱战森, 等. 多用途无人机模块化布局气动设计研究[EB/OL]. 航空学报, doi: 10.7527/s1000-6893.2021.25411. |
LI C P, ZHANG T J, QIAN Z S, et al. Aerodynamic design research of modular configuration for multi-mission unmanned aerial vehicle[EB/OL]. Acta Aeronautica et Astronautica Sinica, doi: 10.7527/s1000-6893.2021.25411. | |
8 |
CHOWDHURY S , MALDONADO V , TONG W , et al. New modular product-platform-planning approach to design macroscale reconfigurable unmanned aerial vehicles[J]. Journal of Aircraft, 2016, 53 (2): 309- 322.
doi: 10.2514/1.C033262 |
9 | 华厚强. 模块化低空长航时无人机的设计与实现[J]. 电子测量技术, 2021, 44 (9): 13- 21. |
HUA H Q . Design and implementation of a modular low-altitude long-endurance UAV[J]. Electronic Measurement Technology, 2021, 44 (9): 13- 21. | |
10 | SU P , SHANG C J , SHEN Q . A hierarchical fuzzy cluster ensemble approach and its application to big data clustering[J]. Journal of Intelligent & Fuzzy Systems, 2015, 28 (6): 2409- 2421. |
11 | LI L J, LIANG Y L. A hierarchical fuzzy clustering algorithm[C]// Proc. of the IEEE International Conference on Computer Application and System Modeling, 2010, 12: V12-248-V12-251. |
12 |
武永乐, 刘铁林, 李三群, 等. 基于模糊综合评判的武器装备体系运用风险评估[J]. 火力与指挥控制, 2018, 43 (10): 74- 78.74-78, 82
doi: 10.3969/j.issn.1002-0640.2018.10.014 |
WU Y L , LIU T L , LI S Q , et al. Evaluation for risk of equipment system of system employment based on fuzzy synthetic evaluation method[J]. Fire Control & Command Control, 2018, 43 (10): 74- 78.74-78, 82
doi: 10.3969/j.issn.1002-0640.2018.10.014 |
|
13 | 谢季礼, 刘承平. 模糊数学方法及其应用[M]. 4版 武汉: 华中科技大学出版社, 2013. |
XIE J L , LIU C P . Method and application of fuzzy mathema-tics[M]. 4th ed Wuhan: Huazhong University of Science & Technology Press, 2013. | |
14 | SILVA F T M , PIMENTEL B A , SOUZA R M C R , et al. Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization[J]. Expert Systems with Applications, 2015, 42 (17/18): 6315- 6328. |
15 | SENGUPTA S, BASAK S, PETERS R A. Data clustering using a hybrid of fuzzy c-means and quantum-behaved particle swarm optimization[C]//Proc. of the IEEE 8th Annual Computing and Communication Workshop and Conference, 2018: 137-142. |
16 | DHANACHANDRA N , CHANU Y J . An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm[J]. Multimedia Tools and Applications, 2020, 1- 20. |
17 | 唐必伟. 粒子群算法的改进及其在无人机任务规划中的应用[D]. 西安: 西北工业大学, 2017. |
TANG B W. An improved particle swarm optimization method and its application on mission planning of unmanned aeria1 vehicle[D]. Xi'an: Northwestern Polytechnical University, 2017. | |
18 | 肖和业, 蒋晓磊, 王若冰, 等. 一种基于BOM理论的空地导弹模块划分方法[J]. 弹箭与制导学报, 2019, 39 (4): 101- 104. |
XIAO H Y , JIANG X L , WANG R B , et al. Research on the modular design method of air-to-ground missile based on theory of BOM[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39 (4): 101- 104. | |
19 |
谌炎辉, 周德俭, 冯志君, 等. 基于BOM的复杂产品模块划分方法研究[J]. 中国机械工程, 2012, 23 (21): 2590- 2593.
doi: 10.3969/j.issn.1004-132X.2012.21.015 |
CHEN Y H , ZHOU D J , FENG Z J , et al. Research on modularity method of complex products based on BOM[J]. China Mechanical Engineering, 2012, 23 (21): 2590- 2593.
doi: 10.3969/j.issn.1004-132X.2012.21.015 |
|
20 |
SAATY T L . Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences, 2008, 1 (1): 83- 98.
doi: 10.1504/IJSSCI.2008.017590 |
21 | 蔡静颖. 模糊聚类算法及应用[M]. 北京: 冶金工业出版社, 2015. |
CAI J Y . Algorithm and application of fuzzy clustering[M]. Beijing: Metallurgical Industry Press, 2015. | |
22 |
TSENG H E , CHANG C C , LI J D . Modular design to support green life-cycle engineering[J]. Expert Systems with Applications, 2008, 34 (4): 2524- 2537.
doi: 10.1016/j.eswa.2007.04.018 |
23 | ZADEH L A. Fuzzy sets[M]//Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh. 1996: 394-432. |
24 |
HO W , MA X . The state-of-the-art integrations and applications of the analytic hierarchy process[J]. European Journal of Operational Research, 2018, 267 (2): 399- 414.
doi: 10.1016/j.ejor.2017.09.007 |
25 |
李发明, 党李成, 左钦文, 等. 专家信度优化的装备效能评估方法[J]. 火力与指挥控制, 2020, 45 (7): 66- 72.
doi: 10.3969/j.issn.1002-0640.2020.07.012 |
LI F M , DANG L C , ZUO Q W , et al. Equipment effective ness evaluation method based on expert reliability optimization[J]. Fire Control & Command Control, 2020, 45 (7): 66- 72.
doi: 10.3969/j.issn.1002-0640.2020.07.012 |
|
26 | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41 (S1): 723738- 723738. |
JIA Y N , TIAN S Y , LI Q . Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (S1): 723738- 723738. | |
27 |
SADRAEY M . Unmanned aircraft design: a review of fundamentals[J]. Synthesis Lectures on Mechanical Engineering, 2017, 1 (2): 1- 193.
doi: 10.1007/978-3-031-79579-4 |
28 |
KOTARSKI D , PILJEK P , PRANJIC , et al. A modular multi rotor unmanned aerial vehicle design approach for development of an engineering education platform[J]. Sensors, 2021, 21 (8): 2737.
doi: 10.3390/s21082737 |
29 | GOTTEN F, FINGER D F. Conceptual design of a modular 150 kg vertical take-off and landing unmanned aerial vehicle[C]// Proc. of the German Aerospace Congress, 2019. |
30 | 卫霞, 王佳航, 朱宇刚, 等. 新型无人机消防救援系统的设计研究[J]. 电子设计工程, 2021, 29 (12): 80- 83.80-83, 88 |
WEI X , WANG J H , ZHU Y G , et al. Design and research on fire rescue system of new UAV[J]. Electronic Design Engineering, 2021, 29 (12): 80- 83.80-83, 88 |
[1] | Siyu DU, Yinghui QUAN, Minghui SHA, Wen FANG, Mengdao XING. Waveform optimization for SFA radar based on evolutionary particle swarm optimization [J]. Systems Engineering and Electronics, 2022, 44(3): 834-840. |
[2] | Gang YANG, Xusheng WU, Pan SUN, Hao ZHU, Sheng XIONG. Partition of line replaceable units in complex equipment based on performance [J]. Systems Engineering and Electronics, 2021, 43(8): 2174-2180. |
[3] | Kun WANG, Shuxian HOU, Li WANG. APU performance parameter prediction model based on adaptive variation PSO-SVM [J]. Systems Engineering and Electronics, 2021, 43(2): 526-536. |
[4] | Shuai ZHAO, Songtao LIU, Huiyang WANG. LPI radar waveform recognition algorithm based on PSO-CNN [J]. Systems Engineering and Electronics, 2021, 43(12): 3552-3563. |
[5] | Zhigang SU, Xinran CHEN, Jingtang HAO. Circular array beamforming method based on particle swarm optimization [J]. Systems Engineering and Electronics, 2020, 42(7): 1449-1454. |
[6] | TANG Weiqiang, LONG Wenkun, SUN Lijuan, HUANG Xiaoli. Multiple model adaptive control of nonlinear systems based on clustering method and neural network [J]. Systems Engineering and Electronics, 2019, 41(9): 2100-2106. |
[7] | LIU Zan, CHEN Xihong, LIU Jin, LIU Qiang. Source number estimation method based on fuzzy C-means clustering [J]. Systems Engineering and Electronics, 2019, 41(2): 244-248. |
[8] | YANG Yongjian, FAN Xiaoguang, GAN Yi, ZHUO Zhenfu, WANG Shengda, ZHAO Peng. Coverage optimization of sensor network based on improved particle swarm optimization [J]. Systems Engineering and Electronics, 2017, 39(2): 310-315. |
[9] | ZHU Yuan-chang, CHEN Zhi-jia, DI Yan-qiang, FENG Shao-chong. Resource prediction scheduling method in IaaS mode “cloud training” [J]. Systems Engineering and Electronics, 2016, 38(2): 323-331. |
[10] | LIU Yong-chun, WANG Guang-xue, LI Ping, YAN Xiao-peng. Fully affine SAR image registration method based on feature points [J]. Systems Engineering and Electronics, 2015, 37(6): 1259-1265. |
[11] | ZHUO Zhen-fu, YANG Yong-jian, FAN Xiao-guang, WANG Sheng-da,NAN Jian-guo, WANG Jiu-chong. Array antennas pattern synthesis based on improved dichotomy particle swarm optimization [J]. Systems Engineering and Electronics, 2015, 37(11): 2460-2466. |
[12] | BI Kai, WANG Xiaodan, XING Yaqiong. Fuzzy clustering ensemble based on D-S theory [J]. Systems Engineering and Electronics, 2014, 36(7): 1446-1452. |
[13] | FU Mengyin1,2, JIN Lu1,2, WANG Meiling1,2, YANG Yi. Segmentation of bottom shadow of vehicle based on #br# improved PSO-MBCV algorithm [J]. Systems Engineering and Electronics, 2014, 36(7): 1439-1445. |
[14] | ZHOU Shi-bo, XU Wei-xiang, CHAI Tian. Data weighted fuzzy C means clustering algorithm [J]. Systems Engineering and Electronics, 2014, 36(11): 2314-2319. |
[15] |
WANG Li-na, WANG Jian-dong, LI Tao, YE Feng.
Cluster’s feature weighting fuzzy clustering algorithm integrating rough sets and shadowed sets [J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1769-1776. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||