Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (2): 568-579.doi: 10.12305/j.issn.1001-506X.2025.02.23
• Systems Engineering • Previous Articles
Xiaolin LIU1, Mengjiao GUO1, Zhuo LI2,*
Received:
2024-01-05
Online:
2025-02-25
Published:
2025-03-18
Contact:
Zhuo LI
CLC Number:
Xiaolin LIU, Mengjiao GUO, Zhuo LI. Adaptive graph convolutional recurrent network prediction method for flight delay based on Dueling DQN optimization[J]. Systems Engineering and Electronics, 2025, 47(2): 568-579.
Table 1
Prediction results comparison between MAGC-GRU model and baseline model"
时间/天 | 评价指标 | 模型 | |||||
HA | RF | GBRT | GRU | STGCN | MAGC-GRU | ||
1 | RMSE | 8.907 | 8.404 | 8.471 | 8.219 | 8.186 | 8.003 |
MAE | 6.589 | 6.271 | 6.486 | 6.122 | 6.080 | 5.890 | |
MAPE/% | 8.685 | 8.280 | 8.315 | 8.118 | 8.065 | 7.864 | |
2 | RMSE | 8.907 | 8.652 | 8.471 | 8.621 | 8.688 | 8.320 |
MAE | 6.589 | 6.490 | 6.486 | 6.313 | 6.493 | 6.180 | |
MAPE/% | 8.685 | 8.602 | 8.613 | 8.494 | 8.647 | 8.236 | |
3 | RMSE | 8.907 | 8.742 | 8.784 | 8.679 | 8.786 | 8.476 |
MAE | 6.589 | 6.565 | 6.565 | 6.541 | 6.565 | 6.239 | |
MAPE/% | 8.685 | 8.716 | 8.729 | 8.661 | 8.762 | 8.364 | |
4 | RMSE | 8.907 | 8.772 | 8.802 | 8.753 | 8.821 | 8.546 |
MAE | 6.589 | 6.597 | 6.593 | 6.686 | 6.662 | 6.334 | |
MAPE/% | 8.685 | 8.762 | 8.768 | 8.794 | 8.846 | 8.472 | |
5 | RMSE | 8.907 | 8.793 | 8.823 | 8.797 | 8.861 | 8.645 |
MAE | 6.589 | 6.623 | 6.627 | 6.703 | 6.697 | 6.463 | |
MAPE/% | 8.685 | 8.793 | 8.806 | 8.838 | 8.895 | 8.611 |
1 |
HENRIQUES R , FEITEIRA I . Predictive modelling: flight delays and associated factors, Hartsfield-Jackson Atlanta International Airport[J]. Procedia Computer Science, 2018, 138, 638- 645.
doi: 10.1016/j.procs.2018.10.085 |
2 | BASPINAR B , KOYUNCU E . A data-driven air transportation delay propagation model using epidemic process models[J]. International Journal of Aerospace Engineering, 2016, 2016 (1): 4836260. |
3 | 王春政, 胡明华, 杨磊, 等. 基于Agent模型的机场网络延误预测[J]. 航空学报, 2021, 42 (7): 452- 465. |
WANG C Z , HU M H , YANG L , et al. Airport network delay prediction based on Agent model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (7): 452- 465. | |
4 | 罗赟骞, 陈志杰, 汤锦辉, 等. 采用支持向量机回归的航班延误预测研究[J]. 交通运输系统工程与信息, 2015, 15 (1): 143- 149. |
LUO Y Q , CHEN Z J , TANG J H , et al. Flight delay prediction using support vector machine regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15 (1): 143- 149. | |
5 |
LI Q , JING R Z . Characterization of delay pro-pagation in the air traffic network[J]. Journal of Air Transport Management, 2021, 94, 102075.
doi: 10.1016/j.jairtraman.2021.102075 |
6 | 程华, 李艳梅, 罗谦, 等. 基于C4.5决策树方法的到港航班延误预测问题研究[J]. 系统工程理论与实践, 2014, 34 (S1): 239- 247. |
CHENG H , LI Y M , LUO Q , et al. Study on flight delay with C4.5 decision tree based prediction method[J]. Systems Engineering Theory and Practice, 2014, 34 (S1): 239- 247. | |
7 | KIM Y J, CHOI S, BRICENO S, et al. A deep learning approach to flight delay prediction[C]//Proc. of the 35th Digital Avionics Systems Conference, 2016. |
8 | YU B , GUO Z , ASIAN S , et al. Flight delay prediction for commercial air transport: a deep learning approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 125 (5): 203- 221. |
9 | CAI K Q , LI Y , FANG Y P , et al. A deep learning approach for flight delay prediction through time-evolving graphs[J]. IEEE Trans.on Intelligent Transportation Systems, 2021, 23 (8): 11397- 11407. |
10 | 姜雨, 陈名扬, 袁琪, 等. 基于时空图卷积神经网络的离港航班延误预测[J]. 北京航空航天大学学报, 2023, 49 (5): 1044- 1052. |
JIANG Y , CHEN M Y , YUAN Q , et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (5): 1044- 1052. | |
11 | ZENG W L , LI J , QUAN Z B , et al. A deep graph-embedded LSTM neural network approach for airport delay prediction[J]. Journal of Advanced Transportation, 2021, 2021 (1): 6638130. |
12 | CAI K Q , LI Y , ZHU Y W , et al. A geographical and operational deep graph convolutional approach for flight delay prediction[J]. Chinese Journal of Aeronautics, 2023, 36 (3): 357- 367. |
13 | TAN R K, BORA S. Parameter tuning in modeling and simulations by using swarm intelligence optimization algorithms[C]//Proc. of the International Conference on Computational Intelligence and Communication Network, 2018: 148-152. |
14 | 龙远, 邓小龙, 杨希祥, 等. 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48 (10): 1970- 1978. |
LONG Y , DENG X L , YANG X X , et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): 1970- 1978. | |
15 | 杨帆, 申亚, 李东东, 等. 基于GA-GNNM的极地光伏发电功率预测方法[J]. 太阳能学报, 2022, 43 (4): 167- 174. |
YANG F , SHEN Y , LI D D , et al. Polar photovoltaic power forecasting method based on GA-GNNM[J]. Acta Energiae Solaris Sinica, 2022, 43 (4): 167- 174. | |
16 | 陈超逸, 鲁娟, 陈楷, 等. 车削表面粗糙度解析模型与DDQN-SVR预测模型研究[J]. 机械工程学报, 2021, 57 (13): 262- 272. |
CHEN C Y , LU J , CHEN K , et al. Research on analytical model and DDQN-SVR prediction model of turning surface roughness[J]. Journal of Mechanical Engineering, 2021, 57 (13): 262- 272. | |
17 | 陈海鹏, 李赫, 阚天洋, 等. 考虑风电时序特性的深度小波-时序卷积网络的超短期风功率预测[J]. 电网技术, 2023, 47 (4): 1653- 1665. |
CHEN H P , LI H , KAN T Y , et al. Ultra-short-term wind power prediction of deep wavelet-timing convolutional network considering wind power timing characteristics[J]. Power System Technology, 2023, 47 (4): 1653- 1665. | |
18 | SHI Y , HUI L . Wind power prediction based on outlier correction, ensemble reinforcement learning, and residual correction[J]. Energy, 2022, 250, 123857. |
19 | YU C Q , YAN G X , YU C M , et al. A multi-factor driven spatio temporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks[J]. Energy, 2023, 263, 126034. |
20 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. [2023-11-05]. https://doi.org/10.48550/arXiv.1312.6203. |
21 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proc. of the Advances in Neural Information Processing Systems, 2016. |
22 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-11-05]. https://doi.org/10.48550/arXiv.1609.02907. |
23 | ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//Proc. of the Conference on Neural Information Processing Systems, 2017: 5998-6008. |
24 | CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-11-05]. https://doi.org/10.48550/arXiv.1609. |
25 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. https://arXivpreprintarxiv:1409.0473, 2014. |
26 | SUN G L , AYEPAHMENSAH D , XU R , et al. End-to-end CNN-based dueling deep Q-Network for autonomous cell activation in Cloud-RANs[J]. Journal of Network and Computer Applications, 2020, 169, 102757. |
27 | MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[EB/OL]. [2023-11-05]. https://people.engr.tamu.edu/guni/ccsce642/files/clqn.pdf. |
28 | REBOLLO J J , BALAKRISHNAN H . Characterization and prediction of air traffic delays[J]. Transportation Research Part C: Emerging Technologies, 2014, 44, 231- 241. |
29 | XIA Y, CHEN J G. Traffic flow forecasting method based on gradient boosting decision tree[C]//Proc. of the 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology, 2017: 436-439. |
[1] | Ke FU, Hao CHEN, Yu WANG, Quan LIU, Jian HUANG. Uncertainty-based Bayesian policy reuse method [J]. Systems Engineering and Electronics, 2025, 47(2): 535-543. |
[2] | Xunliang YAN, Kuan WANG, Zijian ZHANG, Peichen WANG. Reentry guidance method based on LSTM-DDPG [J]. Systems Engineering and Electronics, 2025, 47(1): 268-279. |
[3] | Wei CAI, Xin WANG, Xinhao JIANG, Zhiyong YANG, Dong CHEN. Research on few shot target detection method based on decoupling [J]. Systems Engineering and Electronics, 2024, 46(9): 2941-2950. |
[4] | Tingyu ZHANG, Ying ZENG, Nan LI, Hongzhong HUANG. Spacecraft power-signal composite network optimization algorithm based on DRL [J]. Systems Engineering and Electronics, 2024, 46(9): 3060-3069. |
[5] | Yuqi XIA, Yanyan HUANG, Qia CHEN. Path planning for unmanned vehicle reconnaissance based on deep Q-network [J]. Systems Engineering and Electronics, 2024, 46(9): 3070-3081. |
[6] | Zhipeng YANG, Zihao CHEN, Chang ZENG, Song LIN, Jindi MAO, Kai ZHANG. Online route planning decision-making method of aircraft in complex environment [J]. Systems Engineering and Electronics, 2024, 46(9): 3166-3175. |
[7] | Xiaoxuan CHEN, Shuwen XU, Shaohai HU, Xiaole MA. Infrared and visible light image fusion based on convolution and self attention [J]. Systems Engineering and Electronics, 2024, 46(8): 2641-2649. |
[8] | Lisha PENG, Yuxiang SUN, Yufan XUE, Xianzhong ZHOU. Intelligent decision-making technology for wargame by integrating three-way multiple attribute decision-making and SAC [J]. Systems Engineering and Electronics, 2024, 46(7): 2310-2322. |
[9] | Qianglong WANG, Xiaoguang GAO, Bicong WU, Zijian HU, Kaifang WAN. Review of research on restricted Boltzmann machine and its variants [J]. Systems Engineering and Electronics, 2024, 46(7): 2323-2345. |
[10] | Hongda GUO, Jingtao LOU, Youchun XU, Peng YE, Yongle LI, Jinsheng CHEN. Event-triggered communication of multiple unmanned ground vehicles collaborative based on MADDPG [J]. Systems Engineering and Electronics, 2024, 46(7): 2525-2533. |
[11] | Xiantao SUN, Wangyang JIANG, Wenjie CHEN, Weihai CHEN, Yali ZHI. Object grasp pose detection based on the region of interest [J]. Systems Engineering and Electronics, 2024, 46(6): 1867-1877. |
[12] | Xuemei CHEN, Zhiheng LIU, Suiping ZHOU, Hang YU, Yanming LIU. Road extraction from high-resolution remote sensing images based on HRNet [J]. Systems Engineering and Electronics, 2024, 46(4): 1167-1173. |
[13] | Mengyu ZHANG, Yajie DOU, Ziyi CHEN, Jiang JIANG, Kewei YANG, Bingfeng GE. Review of deep reinforcement learning and its applications in military field [J]. Systems Engineering and Electronics, 2024, 46(4): 1297-1308. |
[14] | Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation [J]. Systems Engineering and Electronics, 2024, 46(3): 831-838. |
[15] | Yanling LI, Feizhou LUO, Zhilei GE. Robust observer-based deep reinforcement learning for attitude stabilization of vertical takeoff and landing vehicle [J]. Systems Engineering and Electronics, 2024, 46(3): 1038-1047. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||