Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1167-1173.doi: 10.12305/j.issn.1001-506X.2024.04.04
• Electronic Technology • Previous Articles Next Articles
Xuemei CHEN1,2, Zhiheng LIU1,2,*, Suiping ZHOU1, Hang YU1, Yanming LIU1
Received:
2023-01-19
Online:
2024-03-25
Published:
2024-03-25
Contact:
Zhiheng LIU
CLC Number:
Xuemei CHEN, Zhiheng LIU, Suiping ZHOU, Hang YU, Yanming LIU. Road extraction from high-resolution remote sensing images based on HRNet[J]. Systems Engineering and Electronics, 2024, 46(4): 1167-1173.
Table 2
Comparison of road segmentation evaluation indexes of different models %"
网络模型 | Recall | Precision | MIoU | F1 |
U-Net | 95.55 | 97.42 | 80.72 | 96.47 |
FCN | 93.37 | 98.09 | 73.97 | 95.66 |
PSPNet | 93.56 | 98.59 | 75.59 | 96.01 |
DeeplabV3+ | 95.08 | 98.21 | 79.96 | 96.62 |
D-LinkNet50 | 89.71 | 87.45 | 54.16 | 87.91 |
HRNet | 94.80 | 98.19 | 79.28 | 96.46 |
本文方法 | 97.26 | 96.85 | 84.91 | 97.25 |
1 | 刘洋, 康健, 管海燕, 等. 基于双注意力残差网络的高分遥感影像道路提取模型[J]. 地球信息科学学报, 2023, 25 (2): 396- 408. |
LIU Y , KANG J , GUAN H Y , et al. Road extraction model of high-resolution remote sensing images based on dual-attention residual network[J]. Journal of Geo-Information Science, 2023, 25 (2): 396- 408. | |
2 | 梁茜亚, 王卷乐, 李朋飞, 等. 基于高分一号(GF-1)影像的蒙古高原干旱半干旱地区自然道路提取研究——以蒙古国古尔班特斯苏木为例[J]. 自然资源遥感, 2022, 35 (2): 122- 131. |
LIANG Q Y , WANG J L , LI P F , et al. Research on natural roads extraction in arid and semiarid regions of the Mongolian Plateau based on GF-1 images-take the Gurvantes Soum, Mongolia as an example[J]. Remote Sensing for Natural Resources, 2022, 35 (2): 122- 131. | |
3 | DAI L , ZHANG G Y , ZHANG R T . RADANet: road augmented deformable attention network for road extraction from complex high-resolution remote-sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5602213. |
4 | ZHANG X , ZHANG C K , LI H M , et al. A road extraction method based on high resolution remote sensing image[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 671- 676. |
5 |
LIU L Y , DONG Y Y , HUANG W J , et al. Enhanced regional monitoring of wheat powdery mildew based on an instance-based transfer learning method[J]. Remote Sensing, 2019, 11 (3): 298.
doi: 10.3390/rs11030298 |
6 | MEGHANA I, MEGHANA J D N V L, JAYARAMAN R. Smart attendance management system using radio frequency identification[C]//Proc. of the International Conference on Communication and Signal Processing, 2020: 1045-1049. |
7 | 戴激光, 王杨, 杜阳, 等. 光学遥感影像道路提取的方法综述[J]. 遥感学报, 2020, 24 (7): 804- 823. |
DAI J G , WANG Y , DU Y , et al. Development and prospect of road extraction method for optical remote sensing image[J]. National Remote Sensing Bulletin, 2020, 24 (7): 804- 823. | |
8 |
DAI J G , MA R C , GONG L T , et al. A model-driven-to-sample-driven method for rural road extraction[J]. Remote Sensing, 2021, 13 (8): 1417.
doi: 10.3390/rs13081417 |
9 |
LIN X G , ZHANG R , SHEN J . A template-matching based approach for extraction of roads from very high-resolution remotely sensed imagery[J]. International Journal of Image and Data Fusion, 2012, 3 (2): 149- 168.
doi: 10.1080/19479832.2011.642413 |
10 |
TAN H , SHEN Z M , DAI J G . Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features[J]. ISPRS International Journal of Geo-Information, 2021, 10 (11): 754.
doi: 10.3390/ijgi10110754 |
11 |
YANG K L , CUI W H , SHI S , et al. Semi-automatic method of extracting road networks from high-resolution remote-sensing images[J]. Applied Sciences, 2022, 12 (9): 4705.
doi: 10.3390/app12094705 |
12 |
GUO Q , WANG Z P . A self-supervised learning framework for road centerline extraction from high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4451- 4461.
doi: 10.1109/JSTARS.2020.3014242 |
13 | LI M M , STEIN A , BIJKER W , et al. Region-based urban road extraction from VHR satellite images using binary partition tree[J]. International Journal of Applied Earth Observation and Geo-information, 2016, 44 (9): 217- 225. |
14 |
LIN X G , XIE W H , ZHANG L B , et al. Semi-automatic road extraction from high resolution satellite images by template matching using Kullback-Leibler divergence as a similarity measure[J]. International Journal of Image and Data Fusion, 2022, 13 (4): 316- 336.
doi: 10.1080/19479832.2022.2121767 |
15 | 房玉品, 王小鹏, 李新娜. 基于自适应形态学的遥感图像道路提取[J]. 激光与光电子学进展, 2022, 59 (16): 135- 142. |
FANG Y P , WANG X P , LI X N . Road extraction from remote sensing images based on adaptive morphology[J]. Laser & Optoelectronics Progress, 2022, 59 (16): 135- 142. | |
16 | 林鹏, 阮仁宗, 王玉强, 等. 一种基于面向对象的城镇道路自动提取方法研究[J]. 地理与地理信息科学, 2016, 32 (1): 42. |
LIN P , RUAN R Z , WANG Y Q , et al. Research on extraction of road based on object oriented in an urban context[J]. Geography and Geo-Information Science, 2016, 32 (1): 42. | |
17 |
ABDOLLAHI A , PRADHAN B , ALAMRI A . VNet: an end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data[J]. IEEE Access, 2020, 8, 179424- 179436.
doi: 10.1109/ACCESS.2020.3026658 |
18 | WANG Y S , SEO J H , JEON T Y . NL-LinkNet: toward lighter but more accurate road extraction with nonlocal operations[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3000105. |
19 |
DING L , BRUZZONE L . DiResNet: direction-aware residual network for road extraction in VHR remote sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (12): 10243- 10254.
doi: 10.1109/TGRS.2020.3034011 |
20 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241. |
21 | ZHOU Z W , RAHMAN S M M , TAJBAKHSH N , et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans.on Medical Imaging, 2019, 39 (6): 1856- 1867. |
22 | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6230-6239. |
23 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proc. of the Europeon Conference on Computer Vision, 2018: 833-851. |
24 | 赵凌虎, 袁希平, 甘淑, 等. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35 (1): 107- 114. |
ZHAO L H , YUAN X P , GAN S , et al. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35 (1): 107- 114. | |
25 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. |
26 | 龙伊娜, 谷玉海, 吴文昊, 等. 基于改进D-Linknet的高分遥感影像道路提取方法[J]. 激光杂志, 2023, 44 (5): 162- 168. |
LONG Y N , GU Y H , WU W H , et al. Road extraction method of high resolution remote sensing image based on improved D-Linknet[J]. Laser Journal, 2023, 44 (5): 162- 168. | |
27 | GIUSTI A, CIREȘAN D, MASCI J, et al. Fast image scanning with deep max-pooling convolutional neural networks[C]//Proc. of the IEEE International Conference on Image Processing, 2013. |
28 | WANG J D , KE S , CHENG T H , et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 33 (10): 3349- 3364. |
29 | WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803. |
30 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proc. of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5686-5696. |
31 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. |
32 | JADON S. A survey of loss functions for semantic segmentation[C]//Proc. of the IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, 2020. |
33 | MA Y D, LIU Q, QIAN Z B. Automated image segmentation using improved PCNN model based on cross-entropy[C]//Proc. of the International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004: 743-746. |
34 | SUDRE C H, LI W, VERCAUTEREN T, et al. Generalised dice overlap as a deep learning loss function for highly unba-lanced segmentations[C]//Proc. of the International Workshop on Deep Learning in Medical Image Analysis, 2017: 240-248. |
35 | ZHU Q Q , ZHANG Y N , WANG L Z , et al. A global context-aware and batch-independent network for road extraction from VHR satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175 (12): 353- 365. |
36 | SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 39 (4): 640- 651. |
37 | ZHOU L C, ZHANG C, WU M. D-LinkNet: linkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018: 192-1924. |
38 | TIELEMAN T , HINTON G . Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4 (2): 26- 31. |
[1] | Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation [J]. Systems Engineering and Electronics, 2024, 46(3): 831-838. |
[2] | Duanyang SHI, Qiang LIN, Bing HU, Xiaoshuai DU. Target detection method of primary surveillance radar based on YOLO [J]. Systems Engineering and Electronics, 2024, 46(1): 143-151. |
[3] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
[4] | Kai SHAO, Ziqun DU, Guangyu WANG. CSI feedback method for dynamically adjusting compression rate based on model pruning [J]. Systems Engineering and Electronics, 2023, 45(8): 2615-2622. |
[5] | Tianshu CUI, Dong WANG, Zhen HUANG. Automatic modulation classification based on lightweight network for space cognitive communication [J]. Systems Engineering and Electronics, 2023, 45(7): 2220-2226. |
[6] | Yu JIANG, Qi YUAN, Zhitao HU, Weiwei WU, Xin GU. Airport arrival and departure delay time prediction based on meteorological factors [J]. Systems Engineering and Electronics, 2023, 45(6): 1722-1731. |
[7] | Qian CHENG, Jia LI, Juan DU. Ship target detection algorithm of optical remote sensing image based on YOLOv5 [J]. Systems Engineering and Electronics, 2023, 45(5): 1270-1276. |
[8] | Yang CHEN, Canhui LIAO, Kun ZHANG, Jian LIU, Pengju WANG. A signal modulation indentification algorithm based on self-supervised contrast learning [J]. Systems Engineering and Electronics, 2023, 45(4): 1200-1206. |
[9] | Ye ZHANG, Yi HOU, Kewei OUYANG, Shilin ZHOU. Survey of univariate sequence data classification methods [J]. Systems Engineering and Electronics, 2023, 45(2): 313-335. |
[10] | Zhengtu SHAO, Dengrong XU, Wenli XU, Hanzhong WANG. Radar active jamming recognition based on LSTM and residual network [J]. Systems Engineering and Electronics, 2023, 45(2): 416-423. |
[11] | Renfei CHEN, Yong PENG, Zhongwen LI. A novel detector for floating objects based on continual unsupervised domain adaptation strategy [J]. Systems Engineering and Electronics, 2023, 45(11): 3391-3401. |
[12] | Chensong TAO, Siwei CHEN, Shunping XIAO. SAR image interrupted sampling repeater jamming detection based on deep learning models [J]. Systems Engineering and Electronics, 2023, 45(11): 3465-3473. |
[13] | Shiyang HE, Ling WANG, Daiyin ZHU, Jun QIAN. Thunderstorm prediction method based on spatiotemporal memory decoupling RNN [J]. Systems Engineering and Electronics, 2023, 45(11): 3474-3480. |
[14] | Haoran LI, Wei XIONG, Yaqi CUI. An association method between SAR images and AIS information based on depth feature fusion [J]. Systems Engineering and Electronics, 2023, 45(11): 3491-3497. |
[15] | Zichao LIU, Jiang WANG, Shaoming HE. Time and angle control guidance law based on deep learning [J]. Systems Engineering and Electronics, 2023, 45(11): 3579-3587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||