Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1157-1166.doi: 10.12305/j.issn.1001-506X.2024.04.03
• Electronic Technology • Previous Articles Next Articles
Yiding GAO1,2, Min WU1,2, Chengpeng HAO1,2,*, Zhigang SHANG3
Received:
2023-02-10
Online:
2024-03-25
Published:
2024-03-25
Contact:
Chengpeng HAO
CLC Number:
Yiding GAO, Min WU, Chengpeng HAO, Zhigang SHANG. Coherent integration and detection algorithm for high-speed weak targets in OFDM sonar based on FrFT-Keystone motion compensation[J]. Systems Engineering and Electronics, 2024, 46(4): 1157-1166.
1 |
STURM C , WIESBECK W . Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99 (7): 1236- 1259.
doi: 10.1109/JPROC.2011.2131110 |
2 | 赵鹏. 典型车载通信环境下OFDM信号测距测速算法研究[D]. 长沙: 湖南大学, 2014. |
ZHAO P. Range and velocity measurement using OFDM signal in typical vehicle communication environment[D]. Changsha: Hunan University, 2014. | |
3 |
ZHANG T , XIA X G . OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (1): 394- 404.
doi: 10.1109/TGRS.2014.2322813 |
4 |
ZHANG T , XIA X G , KONG L . IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse[J]. IEEE Trans.on Signal Processing, 2014, 62 (18): 4748- 4759.
doi: 10.1109/TSP.2014.2339796 |
5 |
XIA X G , ZHANG T , KONG L . MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (3): 2276- 2293.
doi: 10.1109/TAES.2015.140477 |
6 |
CAO Y H , XIA X G , WANG S H . IRCI free colocated MIMO radar based on sufficient cyclic prefix OFDM waveforms[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (3): 2107- 2120.
doi: 10.1109/TAES.2015.140526 |
7 |
CAO Y H , XIA X G . IRCI-free MIMO-OFDM SAR using circularly shifted Zadoff-chu sequences[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (5): 1126- 1130.
doi: 10.1109/LGRS.2014.2385693 |
8 | OZKAPTAN C D, EKICI E, ALTINTAS O, et al. OFDM pilot-based radar for joint vehicular communication and radar systems[C]//Proc. of the IEEE Vehicular Networking Conference, 2018. |
9 | 顾陈, 张劲东, 朱晓华. 基于OFDM的多载波调制雷达系统信号处理及检测[J]. 电子与信息学报, 2009, 31 (6): 1298- 1300. |
GU C , ZHANG J D , ZHU X H . Signal processing and detecting for multicarrier modulated radar system based on OFDM[J]. Journal of Electronics & Information Technology, 2009, 31 (6): 1298- 1300. | |
10 | 张杨梅, 冯西安. 匀速运动目标长时间积累检测中的解距离模糊算法研究[J]. 西北工业大学学报, 2016, 34 (2): 194- 200. |
ZHANG Y M , FENG X A . Resolving range ambiguity in long time accumulation detection of target moving with uniform velocity[J]. Journal of Northwestern Polytechnical University, 2016, 34 (2): 194- 200. | |
11 |
ZHENG J B , LIU H W , LIU J , et al. Radar high-speed maneuvering target detection based on three-dimensional scaled transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (8): 2821- 2833.
doi: 10.1109/JSTARS.2018.2846731 |
12 | 张杨梅. 水下小目标主动探测关键技术研究[D]. 西安: 西北工业大学, 2017. |
ZHANG Y M. Research on the key technologies of active detection of underwater small target[D]. Xi'an: Northwestern Polytechnical University, 2017. | |
13 | 杨宇超, 方明, 赵晨帆. 高速机动目标长时间相参积累和参数估计算法研究[J]. 系统工程与电子技术, 2022, 44 (12): 3811- 3820. |
YANG Y C , FANG M , ZHAO C F . Research on long time coherent integration and parameter estimation algorithm of high-speed maneuvering targets[J]. Systems Engineering and Electronics, 2022, 44 (12): 3811- 3820. | |
14 | 孙苇轩, 闫晟, 郝程鹏. 适用于水下高速机动目标的自适应检测方法[J]. 无人系统技术, 2022, 5 (4): 40- 49. |
SUN W X , YAN S , HAO C P . Adaptive detection method for underwater high-speed maneuvering targets[J]. Unmanned Systems Technology, 2022, 5 (4): 40- 49. | |
15 |
PIGNOL F , COLONE F , MARTELLI T . Lagrange-polynomial-interpolation-based keystone transform for a passive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (3): 1151- 1167.
doi: 10.1109/TAES.2017.2775924 |
16 | 张亮, 陈辉, 张昭建, 等. 基于非标准Keystone变换的波形捷变雷达相参积累算法[J]. 系统工程与电子技术, 2023, 45 (11): 3481- 3490. |
ZHANG L , CHEN H , ZHANG Z J , et al. A coherent integration algorithm of waveform-agile radar based on non-standard Keystone transform[J]. Systems Engineering and Electronics, 2023, 45 (11): 3481- 3490. | |
17 | JIAO Z, ZHANG W. A novel detection method based on ge-neralized Keystone transform and RFT for high-speed maneuvering target[C]//Proc. of the 8th International Symposium on Computational Intelligence and Design, 2015: 279-282. |
18 | SUO P C , TAO S , TAO R , et al. Detection of high-speed and accelerated target based on the linear frequency modulation radar[J]. Institution of Engineering and Technology Radar, Sonar & Navigation, 2014, 8 (1): 37- 47. |
19 |
XING M D , SU J H , WANG G Y , et al. New parameter estimation and detection algorithm for high speed small target[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (1): 214- 224.
doi: 10.1109/TAES.2011.5705671 |
20 | SU J H , XING M D , WANG G Y . High-speed multi-target detection with narrowband radar[J]. IET, Radar, Sonar & Navigation, 2010, 4 (4): 595- 603. |
21 | 裴家正, 黄勇, 陈宝欣. 联合脉压与Radon傅里叶变换的长时间相参积累方法[J]. 雷达学报, 2021, 10 (6): 956- 969. |
PEI J Z , HUANG Y , CHEN B X . Long time coherent integration method based on combining pulse compression and Radon-Fourier transform[J]. Journal of Radars, 2021, 10 (6): 956- 969. | |
22 |
TIAN J , CUI W , WU S . A novel method for parameter estimation of space moving targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (2): 389- 393.
doi: 10.1109/LGRS.2013.2263332 |
23 | 杨宇超, 方明, 赵晨帆, 等. 高速机动目标长时间相参积累算法[J]. 系统工程与电子技术, 2023, 45 (5): 1359- 1370. |
YANG Y C , FANG M , ZHAO C F , et al. Long-time coherent integration algorithm for high-speed maneuvering targets[J]. Systems Engineering and Electronics, 2023, 45 (5): 1359- 1370. | |
24 |
CHEN X L , GUAN J , LIU N B , et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Trans.on Signal Processing, 2014, 62 (4): 939- 953.
doi: 10.1109/TSP.2013.2297682 |
25 |
LI X L , CUI G L , YI W , et al. Coherent integration for maneuvering target detection based on Radon-Lv's distribution[J]. IEEE Signal Processing Letters, 2015, 22 (9): 1467- 1471.
doi: 10.1109/LSP.2015.2390777 |
26 | WU M , YAN S F . Motion compensation for OFDM inverse synthetic aperture sonar imaging based on compressed sensing[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70, 5011613. |
27 | 杨宇飞. 基于OFDM雷达通信一体化的接收算法设计[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
YANG Y F. Design of receiving algorithm OFDM based radar communication integration[D]. Harbin: Harbin Institute of Technology, 2017. | |
28 | 黄响. 高速微弱目标检测算法研究[D]. 西安: 西安电子科技大学, 2019. |
HUANG X. Study on high-speed low-observable target detection[D]. Xi'an: Xidian University, 2019. | |
29 | 张顺生, 曾涛. 基于Keystone变换的微弱目标检测[J]. 电子学报, 2005, 33 (9): 1675- 1678. |
ZHANG S S , ZENG T . Weak target detection based on Keystone transform[J]. Acta Electronica Sinica, 2005, 33 (9): 1675- 1678. | |
30 |
ALMEIDA L B . The fractional Fourier transform and time-frequency representations[J]. IEEE Trans.on Signal Processing, 1994, 42 (11): 3084- 3091.
doi: 10.1109/78.330368 |
31 |
ZHANG X H , CAI J Y , LIU L F , et al. An integral transform and its applications in parameter estimation of LFM signals[J]. Circuits, Systems, and Signal Processing, 2012, 31 (3): 1017- 1031.
doi: 10.1007/s00034-011-9356-z |
32 | ZHAN M Y , HUANG P H , ZHU S Q , et al. A modified Keystone transform matched filtering method for space-moving target detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5105916. |
33 | LI X L , CUI G L , YI W , et al. Manoeuvring target detection based on Keystone transform and Lv's distribution[J]. Institution of Engineering and Technology Radar, Sonar & Navigation, 2016, 10 (7): 1234- 1242. |
34 | LI X L , KONG L J , CUI G L , et al. CLEAN-based coherent integration method for high-speed multi-targets detection[J]. Institution of Engineering and Technology Radar, Sonar & Navigation, 2016, 10 (9): 1671- 1682. |
35 |
MISIUREWICZ J , KULPA K S , CZEKALA Z , et al. Radar detection of helicopters with application of CLEAN method[J]. IEEE Trans.on Aerospace and Electronic Systems, 2012, 48 (4): 3525- 3537.
doi: 10.1109/TAES.2012.6324734 |
36 |
KRONAUGE M , ROHLING H . Fast two-demensional CFAR procedure[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (3): 1817- 1823.
doi: 10.1109/TAES.2013.6558022 |
[1] | Yuanrong TIAN, Jundi WANG, Xiaotian WU. LFM radar detection probability estimation under repeater jamming [J]. Systems Engineering and Electronics, 2024, 46(2): 497-504. |
[2] | Yuchao YANG, Ming FANG, Chenfan ZHAO, Gang FANG. Long-time coherent integration algorithm for high-speed maneuvering targets [J]. Systems Engineering and Electronics, 2023, 45(5): 1359-1370. |
[3] | Liang ZHANG, Qinglei DU, Bilei ZHOU, Qizhe QU, Yongliang WANG. A coherent integration algorithm of frequency-agile radar based on non-standard Keystone transform [J]. Systems Engineering and Electronics, 2023, 45(12): 3836-3844. |
[4] | Liang ZHANG, Hui CHEN, Zhaojian ZHANG, Xiaoge WANG, Yongliang WANG. A coherent integration algorithm of waveform-agile radar based on non-standard Keystone transform [J]. Systems Engineering and Electronics, 2023, 45(11): 3481-3490. |
[5] | Yan LYU, Fei CAO, Jianfeng XU, Xiaowei FENG. Robust beamforming algorithm for monostatic MIMO radar based on FRFT [J]. Systems Engineering and Electronics, 2023, 45(1): 79-85. |
[6] | Yuchao YANG, Ming FANG, Chenfan ZHAO, Yueqi WANG, Gang FANG. Research on long-time coherent integration and parameter estimation algorithm of high-speed maneuvering targets [J]. Systems Engineering and Electronics, 2022, 44(12): 3811-3820. |
[7] | Yichang CHEN, Xin XIONG, Wantian WANG. Target sortie identification method of narrow-band radar based on sparse fractional Fourier transform [J]. Systems Engineering and Electronics, 2021, 43(8): 2129-2136. |
[8] | Xinxin OUYANG, Shanfeng YAO, Yuxiang YANG, Qing HE, Qun WAN. Coherent and non-coherent integration TDOA/FDOA estimation method of frequency-hopping signals [J]. Systems Engineering and Electronics, 2021, 43(5): 1184-1190. |
[9] | Ning WANG, Ming ZHOU, Guoqing LIU, Yuhao YANG, Jun SUN. Interframe noncoherent integration technology based on Chirp Z transform for sea surface target [J]. Systems Engineering and Electronics, 2021, 43(2): 383-389. |
[10] | OUYANG Xinxin, YANG Yuxiang, YAO Shanfeng, HE Qing. TDOA/FDOA estimation algorithm of multi-carrier signals based on CAF coherent integration [J]. Systems Engineering and Electronics, 2019, 41(8): 1881-1886. |
[11] | LI Jun1,2, LIN Qiu-hua-1, YANG Xiu-ting2, KANG Chun-yu2. Passive DOA and range estimation method for nearfield#br# broadband LFM signals [J]. Systems Engineering and Electronics, 2016, 38(8): 1737-1743. |
[12] | LI Hai, ZHOU Meng, WU Ren-biao. Detection and parameter estimation of air highly maneuvering targets via CPT and RPF [J]. Systems Engineering and Electronics, 2016, 38(6): 1235-1242. |
[13] | TIAN Chao, WEN Shu-liang, DU Zhi-yuan. Long time coherent integration algorithm for moving#br# targets with high order motion [J]. Systems Engineering and Electronics, 2015, 37(6): 1229-1236. |
[14] | GU Wenkun, WANG Dangwei, MA Xiaoyan, ZHENG Daikun. Incoherent integration detection using distributed OFDMMIMO radar [J]. Systems Engineering and Electronics, 2015, 37(10): 2266-2271. |
[15] | LI Hui-yong, XU Ding-wen, HU Jin-feng, DAI Wen-juan, HE Zi-shu. FRFT based algorithm for maneuvering target detection with OTH radar [J]. Systems Engineering and Electronics, 2014, 36(9): 1725-1730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||