Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1174-1184.doi: 10.12305/j.issn.1001-506X.2024.04.05
• Electronic Technology • Previous Articles Next Articles
Shaohua LIU, Kang DU, Chundong SHE, Ao YANG
Received:
2022-12-05
Online:
2024-03-25
Published:
2024-03-25
Contact:
Chundong SHE
CLC Number:
Shaohua LIU, Kang DU, Chundong SHE, Ao YANG. Multi-teacher joint knowledge distillation based on CenterNet[J]. Systems Engineering and Electronics, 2024, 46(4): 1174-1184.
Table 2
mAP, number of training rounds, and loading of pre-trained models in different light-weight structures of CenterNet (with VOC dataset)"
主干网络 | mAP | 教师模型 | 训练 轮次 | 学生预 训练模型 |
ResNet50 | 80.22 | - | 100 | Imagenet |
ResNet18 | 73.95 | - | 100 | Imagenet |
ResNet18(KD) | 77.96 | ResNet50 | 100 | Imagenet |
ResNet34 | 79.83 | - | 100 | Imagenet |
ResNet34(KD) | 83.01 | ResNet50 | 100 | Imagenet |
MobileNetV2 | 66.93 | - | 100 | Imagenet |
MobileNetV2(KD) | 75.96 | ResNet50 | 100 | Imagenet |
EfficientNet-b0 | 75.27 | - | 100 | Imagenet |
EfficientNet-b0(KD) | 77.13 | ResNet50 | 100 | Imagenet |
Table 3
Comparison of single teacher knowledge distillation and multi-teacher knowledge distillation"
主干网络 | mAP | 教师模型 | 轮次 |
ResNet18 | 77.96 | ResNet50 | 100 |
ResNet18 | 79.82 | ResNet50 & Hourglass | 100 |
ResNet34 | 83.01 | ResNet50 | 100 |
ResNet34 | 85.32 | ResNet50 & Hourglass | 100 |
MobileNetV2 | 75.96 | ResNet50 | 100 |
MobileNetV2 | 78.23 | ResNet50 & Hourglass | 100 |
EfficientNet-b0 | 77.13 | ResNet50 | 100 |
EfficientNet-b0 | 78.02 | ResNet50 & Hourglass | 100 |
Table 4
Comparison of CenterNet performance obtained by distillation training with different loss weight parameters W (withResNet18 as backbone)"
W(w1, w2, w3, w4) | mAP | 轮次 |
1 000, 1, 0.1, 100 | 76.36 | 100 |
100, 10, 0.1, 100 | 75.39 | 100 |
100, 10, 1, 1 | 72.91 | 100 |
10, 0.1, 1 000, 10 | 71.36 | 100 |
10, 100, 0.1, 100 | 72.23 | 100 |
0.1, 10, 1 000, 1 | 69.88 | 100 |
1 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
2 | NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]///Proc. of the 14th European Conference, 2016: 483-499. |
3 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]///Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255. |
4 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
5 | PURKAIT P, ZHAO C, ZACH C. SPP-Net: deep absolute pose regression with synthetic views[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1712.03452. |
6 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
7 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525. |
8 | FARHADI A, REDMON J. Yolov3: an incremental improvement[C]//Proc. of the Computer Vision and Pattern Recognition, 2018. |
9 |
LAW H , DENG J . CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128 (3): 642- 656.
doi: 10.1007/s11263-019-01204-1 |
10 | ZHOU X Y, WANG D Q, KRAHENBUHL P. Objects as points[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1904.07850. |
11 | ZHOU X Y, ZHUO J C, KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 850-859. |
12 | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856. |
13 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. |
14 | TAN M X, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proc. of the International Conference on Machine Learning, 2019: 6105-6114. |
15 | JIAO X Q, YIN Y C, SHANG L F, et al. Tinybert: distilling BERT for natural language understanding[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1909.10351. |
16 | HAN K, WANG Y H, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589. |
17 | SUN Z Q, YU H K, SONG X D, et al. MobileBERT: a compact task-agnostic bert for resource-limited devices[EB/OL]. [2023-05-04]. https://arxiv.org/abs/2004.02984. |
18 | ABRAHAMYAN L, ZIATCHIN V, CHEN Y M, et al. Bias loss for mobile neural networks[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 6556-6566. |
19 | CHEN Y P, DAI X Y, CHEN D D, et al. Mobile-former: bridging mobilenet and transformer[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5270-5279. |
20 | 黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45 (3): 624- 653. |
HUANG Z H , YANG S Z , LIN W , et al. Knowledge distilation: a survey[J]. Chinese Journal of Computers, 2022, 45 (3): 624- 653. | |
21 | HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14 (7): 38- 39. |
22 | FURLANELLO T, LIPTON Z, TSCHANNEN M, et al. Born again neural networks[C]//Proc. of the International Conference on Machine Learning, 2018: 1607-1616. |
23 | CHO J H, HARIHARAN B. On the efficacy of knowledge distillation[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 4794-4802. |
24 | URBAN G, GERAS K J, KAHOU S E, et al. Do deep convolutional nets really need to be deep and convolutional?[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1603.05691. |
25 | TANG Z Y, WANG D, ZHANG Z Y. Recurrent neural network training with dark knowledge transfer[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2016: 5900-5904. |
26 | YUAN L, TAY F E H, LI G L, et al. Revisiting knowledge distillation via label smoothing regularization[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3903-3911. |
27 | VAPNIK V , VASHIST A . A new learning paradigm: learning using privileged information[J]. Neural Networks, 2009, 22 (5/6): 544- 557. |
28 | PHUONG M, LAMPERT C. Towards understanding know-ledge distillation[C]//Proc. of the International Conference on Machine Learning, 2019: 5142-5151. |
29 | CHENG X, RAO Z F, CHEN Y L, et al. Explaining know-ledge distillation by quantifying the knowledge[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12925-12935. |
30 | LIN S H, XIE H W, WANG B, et al. Knowledge distillation via the target-aware transformer[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10915-10924. |
31 | YANG Z D, LI Z, JIANG X H, et al. Focal and global know-ledge distillation for detectors[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4643-4652. |
32 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1706.03762. |
[1] | Sijia HUANG, Chunfeng SONG, Xuan LI. Target detection in sonar images based on variable scale prior frame [J]. Systems Engineering and Electronics, 2024, 46(3): 771-778. |
[2] | Xiaoyu FANG, Lijia HUANG. SAR ship detection algorithm based on global position information and fusion of residual feature [J]. Systems Engineering and Electronics, 2024, 46(3): 839-848. |
[3] | Chunjie ZHANG, Guanbo WANG, Qi CHEN, Zhi'an DENG. Gesture recognition based on millimeter-wave radar with pure self-attention mechanism [J]. Systems Engineering and Electronics, 2024, 46(3): 859-867. |
[4] | Xiaofeng ZHAO, Jiahui NIU, Chuntong LIU, Yuting XIA. Hyperspectral image classification based on hybrid convolution with three-dimensional attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(9): 2673-2680. |
[5] | Haijun LI, Fancheng KONG, Yun LIN. Infrared ship detection algorithm based on improved YOLOv5s [J]. Systems Engineering and Electronics, 2023, 45(8): 2415-2422. |
[6] | Tianshu CUI, Dong WANG, Zhen HUANG. Automatic modulation classification based on lightweight network for space cognitive communication [J]. Systems Engineering and Electronics, 2023, 45(7): 2220-2226. |
[7] | Zhe DENG, Jing LEI, Chengzhe SUN. Semi-supervised interference cancellation method for frequency hopping signal blind detection [J]. Systems Engineering and Electronics, 2023, 45(7): 2236-2248. |
[8] | Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU. Micro-motion fusion recognition of double band early warning radar based on self-attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(3): 708-716. |
[9] | Pengyu CAO, Chengzhi YANG, Zesheng CHEN, Lu WANG, Limeng SHI. Radar signal recognition method based on deep residual shrinkage attention network [J]. Systems Engineering and Electronics, 2023, 45(3): 717-725. |
[10] | Xiaojia YAN, Weige LIANG, Gang ZHANG, Bo SHE, Fuqing TIAN. Prediction method for mechanical equipment based on RCNN-ABiLSTM [J]. Systems Engineering and Electronics, 2023, 45(3): 931-940. |
[11] | Zhuzhen HE, Min LI, Yao GOU, Aitao YANG. Ship target detection method for synthetic aperture radar images based on improved YOLOv5 [J]. Systems Engineering and Electronics, 2023, 45(12): 3743-3753. |
[12] | Yichen ZHAI, Jiaojiao GU, Fuqiang ZONG, Wenzhi JIANG. Fine grained cross-modal retrieval algorithm for IETM with attention mechanism fused [J]. Systems Engineering and Electronics, 2023, 45(12): 3915-3923. |
[13] | Yanyan HUANG, Shaoyan GAI, Feipeng DA. Image matching algorithm based on attention mechanism of three branch spatial transformation [J]. Systems Engineering and Electronics, 2023, 45(11): 3363-3373. |
[14] | Chenghui QI, Dengyin ZHANG. Progressive image dehaze based on perceptual fusion [J]. Systems Engineering and Electronics, 2023, 45(11): 3419-3427. |
[15] | Junfeng SUN, Chenghai LI, Bo CAO. Network security situation prediction based on TCN-BiLSTM [J]. Systems Engineering and Electronics, 2023, 45(11): 3671-3679. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||