Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3419-3427.doi: 10.12305/j.issn.1001-506X.2023.11.07
• Electronic Technology • Previous Articles Next Articles
Chenghui QI, Dengyin ZHANG
Received:
2022-02-24
Online:
2023-10-25
Published:
2023-10-31
Contact:
Dengyin ZHANG
CLC Number:
Chenghui QI, Dengyin ZHANG. Progressive image dehaze based on perceptual fusion[J]. Systems Engineering and Electronics, 2023, 45(11): 3419-3427.
1 | 郑凤仙, 王夏黎, 何丹丹, 等. 单幅图像去雾算法研究综述[J]. 计算机工程与应用, 2022, 58 (3): 1- 14. |
ZHENG F X , WANG X L , HE D D , et al. A review of research on single-image dehaze algorithms[J]. Computer Engineering and Applications, 2022, 58 (3): 1- 14. | |
2 |
CAI B L , XU X M , JIA K , et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Trans.on Image Processing, 2016, 25 (11): 5187- 5198.
doi: 10.1109/TIP.2016.2598681 |
3 | QIN X, WANG Z L, BAI Y C, et al. FFA-Net: feature fusion attention network for single image dehazing[EB/OL]. [2019-11-18]. https://arxiv.org/abs/1911.07559. |
4 |
NARASIMHAN S G , NAYAR S K . Contrast restoration of weather degraded images[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25 (6): 713- 724.
doi: 10.1109/TPAMI.2003.1201821 |
5 |
ZHU Q S , MAI J M , SHAO L . A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Trans. on Image Processing, 2015, 24 (11): 3522- 3533.
doi: 10.1109/TIP.2015.2446191 |
6 | HE K M , SUN J , TANG X O , et al. Single image haze removal using dark channel prior[J]. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2011, 33 (12): 2341- 2353. |
7 |
JU M Y , DING C , REN W Q , et al. IDE: Image dehazing and exposure using enhanced atmospheric scattering model[J]. IEEE Trans. on Image Processing, 2021, 30, 2180- 2192.
doi: 10.1109/TIP.2021.3050643 |
8 | LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 4770 - 4778. |
9 | ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3194-3203. |
10 | REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3253-3261. |
11 |
汪美琴, 袁伟伟, 张继业. 生成对抗网络GAN的研究综述[J]. 计算机工程与设计, 2021, 42 (12): 3389- 3395.
doi: 10.16208/j.issn1000-7024.2021.12.012 |
WANG M Q , YUAN W W , ZHANG J Y . A review of research on generative adversarial network GANs[J]. Computer Engineering and Design, 2021, 42 (12): 3389- 3395.
doi: 10.16208/j.issn1000-7024.2021.12.012 |
|
12 | QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced pix2pix dehazing network[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8160-8168. |
13 | SHAO Y J, LI L H, REN W Q, et al. Domain adaptation for image dehazing[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2808-2817. |
14 | LIU X H, MA Y R, SHI Z H, et al. Griddehazenet: attention-based multi-scale network for image dehazing[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 7314-7323. |
15 | CUI T, ZHANG Z, TANG Y D, et al. Multi-scale densely connected dehazing network[C]//Proc. of the International Conference on Intelligent Robotics and Applications, 2019: 594-604. |
16 |
HUA Z , FAN G D , LI J J . Iterative residual network for image dehazing[J]. IEEE Access, 2020, 8, 167693- 167710.
doi: 10.1109/ACCESS.2020.3023906 |
17 | 范新南, 赵忠鑫, 严炜, 等. 结合注意力机制的多尺度特征融合图像去雾算法[J]. 计算机科学, 2022, 49 (5): 50- 57. |
FAN X N , ZHAO Z X , YAN W , et al. Multi-scale feature fusion image defog algorithm combined with attention mechanism[J]. Computer Science, 2022, 49 (5): 50- 57. | |
18 | DONG H, PAN J S, XIANG L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2157-2167. |
19 | ZHENG J H , LIU X Y , WANG X D . Single image cloud removal using U-Net and generative adversarial networks[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59, 6371- 6385. |
20 | 田元, 李方迪. 基于深度信息的人体姿态识别研究综述[J]. 计算机工程与应用, 2020, 56 (4): 1- 8. |
TIAN Y , LI F D . A review of human posture recognition research based on depth information[J]. Computer Engineering and Applications, 2020, 56 (4): 1- 8. | |
21 | 鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40 (13): 1315002. |
JU M R , LUO J N , WANG Z B , et al. Multi-scale object detection algorithm that incorporates attention mechanisms[J]. Acta Optica Sinica, 2020, 40 (13): 1315002. | |
22 | FU X Y , LIANG B R , HUANG Y , et al. Lightweight pyramid networks for image deraining[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 31 (6): 1794- 1807. |
23 | SUIN M, PUROHIT K, RAJAGOPALANA N. Spatially-attentive patch-hierarchical network for adaptive motion deblurring[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3606-3615. |
24 | REN W Q , PAN J S , ZHANG H , et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 2020, 128 (1): 240- 259. |
25 | ZHAO S Y , ZHANG L , SHEN Y , et al. RefineDNet: a weakly supervised refinement framework for single image dehazing[J]. IEEE Trans.on Image Processing, 2021, 30, 3391- 3404. |
26 | WOO S, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. |
27 | TANG K , XU D H , LIU H , et al. Context module based multi-patch hierarchical network for motion deblurring[J]. Neural Processing Letters, 2021, 53 (1): 211- 226. |
28 | HE K M , SUN J , TANG X . Guided image filtering[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1397- 1409. |
29 | ZHANG S H, FU H Z, YAN Y G, et al. Attention guided network for retinal image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-assisted Intervention, 2019: 797-805. |
30 | JUSTIN J, ALEXANDRE A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proc. of the European Conference on Computer Vision, 2016: 694-711. |
31 | ADAM P , SAM G , FRANCISCO M , et al. Pytorch: an imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32, 8026- 8037. |
32 | LI B Y , REN W Q , FU D P , et al. Benchmarking single-image dehazing and beyond[J]. IEEE Trans.on Image Processing, 2018, 28 (1): 492- 505. |
[1] | Xiaofeng ZHAO, Jiahui NIU, Chuntong LIU, Yuting XIA. Hyperspectral image classification based on hybrid convolution with three-dimensional attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(9): 2673-2680. |
[2] | Haijun LI, Fancheng KONG, Yun LIN. Infrared ship detection algorithm based on improved YOLOv5s [J]. Systems Engineering and Electronics, 2023, 45(8): 2415-2422. |
[3] | Zhe DENG, Jing LEI, Chengzhe SUN. Semi-supervised interference cancellation method for frequency hopping signal blind detection [J]. Systems Engineering and Electronics, 2023, 45(7): 2236-2248. |
[4] | Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU. Micro-motion fusion recognition of double band early warning radar based on self-attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(3): 708-716. |
[5] | Pengyu CAO, Chengzhi YANG, Zesheng CHEN, Lu WANG, Limeng SHI. Radar signal recognition method based on deep residual shrinkage attention network [J]. Systems Engineering and Electronics, 2023, 45(3): 717-725. |
[6] | Xiaojia YAN, Weige LIANG, Gang ZHANG, Bo SHE, Fuqing TIAN. Prediction method for mechanical equipment based on RCNN-ABiLSTM [J]. Systems Engineering and Electronics, 2023, 45(3): 931-940. |
[7] | Yanyan HUANG, Shaoyan GAI, Feipeng DA. Image matching algorithm based on attention mechanism of three branch spatial transformation [J]. Systems Engineering and Electronics, 2023, 45(11): 3363-3373. |
[8] | Junfeng SUN, Chenghai LI, Bo CAO. Network security situation prediction based on TCN-BiLSTM [J]. Systems Engineering and Electronics, 2023, 45(11): 3671-3679. |
[9] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[10] | Jian WANG, Zihao HE, Jie LIU, Ke YANG. Image fusion algorithm based on gradient domain guided filtering and improved PCNN [J]. Systems Engineering and Electronics, 2022, 44(8): 2381-2392. |
[11] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
[12] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[13] | Tao JIN, Xiaofeng WANG, Runlan TIAN, Xindong ZHANG. Rapid recognition method of radar emitter based on improved 1DCNN+TCN [J]. Systems Engineering and Electronics, 2022, 44(2): 463-469. |
[14] | Yutang MA, Peng SUN, Jieyong ZHANG, Peng WANG, Yunfei YAN, Liang ZHAO. Air group intention recognition method under imbalance samples [J]. Systems Engineering and Electronics, 2022, 44(12): 3747-3755. |
[15] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||