Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3579-3587.doi: 10.12305/j.issn.1001-506X.2023.11.25
• Guidance, Navigation and Control • Previous Articles Next Articles
Zichao LIU1,2, Jiang WANG1,2, Shaoming HE1,2,3,*
Received:
2022-06-04
Online:
2023-10-25
Published:
2023-10-31
Contact:
Shaoming HE
CLC Number:
Zichao LIU, Jiang WANG, Shaoming HE. Time and angle control guidance law based on deep learning[J]. Systems Engineering and Electronics, 2023, 45(11): 3579-3587.
1 |
JEON I S , LEE J I , TAHK M J . Impact-time-control guidance law for anti-ship missiles[J]. IEEE Trans.on Control Systems Technology, 2006, 14 (2): 260- 266.
doi: 10.1109/TCST.2005.863655 |
2 |
LEE J I , JEON I S , TAHK M J . Guidance law to control impact time and angle[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (1): 301- 310.
doi: 10.1109/TAES.2007.357135 |
3 | 李斌, 林德福, 何绍溟, 等. 基于最优误差动力学的时间角度控制制导律[J]. 航空学报, 2018, 39 (11): 157- 167. |
LI B , LIN D F , HE S M , et al. Time and angle control guidance law based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (11): 157- 167. | |
4 |
CHEN X T , WANG J Z . Optimal control based guidance law to control both impact time and impact angle[J]. Aerospace Science and Technology, 2019, 84, 454- 463.
doi: 10.1016/j.ast.2018.10.036 |
5 |
ERER K S , TEKIN R . Impact time and angle control based on constrained optimal solutions[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (10): 2448- 2454.
doi: 10.2514/1.G000414 |
6 |
TEKIN R , ERER K S . Impact time and angle control against moving targets with look angle shaping[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (5): 1020- 1025.
doi: 10.2514/1.G004762 |
7 |
WANG C Y , DONG W , WANG J N , et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (4): 684- 703.
doi: 10.2514/1.G006342 |
8 |
CHEN Z Y , CHEN W C , LIU X M , et al. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint[J]. Aerospace Science and Technology, 2021, 110, 106523.
doi: 10.1016/j.ast.2021.106523 |
9 |
DONG W , WANG C Y , WANG J N , et al. Fixed-time terminal angle constrained cooperative guidance law against maneuvering target[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (2): 1352- 1366.
doi: 10.1109/TAES.2021.3113292 |
10 |
LI W , WEN Q Q , LEI H , et al. Three-dimensional impact angle constrained distributed cooperative guidance law for antiship missiles[J]. Journal of Systems Engineering and Electronics, 2021, 32 (2): 447- 459.
doi: 10.23919/JSEE.2021.000038 |
11 |
WANG C Y , YU H S , DONG W , et al. Three-dimensional impact angle and time control guidance law based on two-stage strategy[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (6): 5361- 5372.
doi: 10.1109/TAES.2022.3169124 |
12 |
ZHANG W Q , CHEN W C , LI J L , et al. Guidance algorithm for impact time, angle, and acceleration control under varying velocity condition[J]. Aerospace Science and Technology, 2022, 123, 107462.
doi: 10.1016/j.ast.2022.107462 |
13 | HARL N , BALAKRISHNAN S N . Impact time and angle gui-dance with sliding mode control[J]. IEEE Trans.on Control Systems Technology, 2011, 20 (6): 1436- 1449. |
14 | 吴放, 常思江. 攻击时间和攻击角度控制的非奇异终端滑模制导律[J]. 哈尔滨工业大学学报, 2021, 53 (6): 94- 103. |
WU F , CHANG S J . Nonsingular terminal sliding mode gui-dance law of impact time and impact angle control[J]. Journal of Harbin Institute of Technology, 2021, 53 (6): 94- 103. | |
15 |
HU Q L , HAN T , XIN M . New impact time and angle gui-dance strategy via virtual target approach[J]. Journal of Gui-dance, Control, and Dynamics, 2018, 41 (8): 1755- 1765.
doi: 10.2514/1.G003436 |
16 | CHEN X T , WANG J Z . Sliding-mode guidance for simultaneous control of impact time and angle[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (2): 392- 401. |
17 |
HOU Z W , YANG Y , LIU L , et al. Terminal sliding mode control based impact time and angle constrained guidance[J]. Aerospace Science and Technology, 2019, 93, 105142.
doi: 10.1016/j.ast.2019.04.050 |
18 |
WANG Z K , FANG Y W , FU W X , et al. Cooperative gui-dance laws against highly maneuvering target with impact time and angle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236 (5): 1006- 1016.
doi: 10.1177/09544100211026081 |
19 | LI H X , LI H J , CAI Y L . Three-dimensional cooperative guidance law to control impact time and angle with fixed-time convergence[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 09544100211043093. |
20 | WANG P Y, GU Y, GUO Y N, et al. Shrinking horizon MPC strategy for impact time and angle guidance[C]//Proc. of the IEEE 40th Chinese Control Conference, 2021: 3667-3672. |
21 |
ZHU J W , SU D L , XIE Y , et al. Impact time and angle control guidance independent of time-to-go prediction[J]. Aerospace Science and Technology, 2019, 86, 818- 825.
doi: 10.1016/j.ast.2019.01.047 |
22 |
YAN X H , ZHU J H , KUANG M C , et al. A computational-geometry-based 3-dimensional guidance law to control impact time and angle[J]. Aerospace Science and Technology, 2020, 98, 105672.
doi: 10.1016/j.ast.2019.105672 |
23 |
KIM T H , LEE C H , JEON I S , et al. Augmented polynomial guidance with impact time and angle constraints[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (4): 2806- 2817.
doi: 10.1109/TAES.2013.6621856 |
24 |
SURVE P , MAITY A , KUMAR S R . Polynomial based impact time and impact angle constrained guidance[J]. IFAC-PapersOnLine, 2022, 55 (1): 486- 491.
doi: 10.1016/j.ifacol.2022.04.080 |
25 |
DENG Y F , REN J L , WANG X , et al. Midcourse iterative guidance method for the impact time and angle control of two-pulse interceptors[J]. Aerospace, 2022, 9 (6): 323.
doi: 10.3390/aerospace9060323 |
26 | 杨秀霞, 曹唯一, 张毅. 时间和角度约束下的双圆弧路径规划[J]. 系统工程与电子技术, 2019, 41 (8): 1835- 1843. |
YANG X X , CAO W Y , ZHANG Y . Bi-arc path planning with time and angle constraint[J]. Systems Engineering and Electronics, 2019, 41 (8): 1835- 1843. | |
27 | 刘子超, 王江, 何绍溟, 等. 基于预测校正的落角约束计算制导方法[J]. 航空学报, 2022, 43 (8): 325433. |
LIU Z C , WANG J , HE S M , et al. A computational guidance algorithm for impact angle control based on predictor-corrector concept[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (8): 325433. | |
28 | 黄嘉, 常思江. 基于数据驱动的攻击时间和攻击角度控制导引律[J]. 系统工程与电子技术, 2022, 44 (10): 3213- 3220. |
HUANG J , CHANG S J . Data-driven method based impact time and impact angle control guidance law[J]. Systems Engineering and Electronics, 2022, 44 (10): 3213- 3220. | |
29 |
LIU Z C , WANG J , HE S M , et al. Learning prediction-correction guidance for impact time control[J]. Aerospace Science and Technology, 2021, 119, 107187.
doi: 10.1016/j.ast.2021.107187 |
30 |
RYOO C K , CHO H , TAHK M J . Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28 (4): 724- 732.
doi: 10.2514/1.8392 |
31 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
[1] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
[2] | Kai SHAO, Ziqun DU, Guangyu WANG. CSI feedback method for dynamically adjusting compression rate based on model pruning [J]. Systems Engineering and Electronics, 2023, 45(8): 2615-2622. |
[3] | Tianshu CUI, Dong WANG, Zhen HUANG. Automatic modulation classification based on lightweight network for space cognitive communication [J]. Systems Engineering and Electronics, 2023, 45(7): 2220-2226. |
[4] | Yu JIANG, Qi YUAN, Zhitao HU, Weiwei WU, Xin GU. Airport arrival and departure delay time prediction based on meteorological factors [J]. Systems Engineering and Electronics, 2023, 45(6): 1722-1731. |
[5] | Yang CHEN, Canhui LIAO, Kun ZHANG, Jian LIU, Pengju WANG. A signal modulation indentification algorithm based on self-supervised contrast learning [J]. Systems Engineering and Electronics, 2023, 45(4): 1200-1206. |
[6] | Ye ZHANG, Yi HOU, Kewei OUYANG, Shilin ZHOU. Survey of univariate sequence data classification methods [J]. Systems Engineering and Electronics, 2023, 45(2): 313-335. |
[7] | Zhengtu SHAO, Dengrong XU, Wenli XU, Hanzhong WANG. Radar active jamming recognition based on LSTM and residual network [J]. Systems Engineering and Electronics, 2023, 45(2): 416-423. |
[8] | Renfei CHEN, Yong PENG, Zhongwen LI. A novel detector for floating objects based on continual unsupervised domain adaptation strategy [J]. Systems Engineering and Electronics, 2023, 45(11): 3391-3401. |
[9] | Chensong TAO, Siwei CHEN, Shunping XIAO. SAR image interrupted sampling repeater jamming detection based on deep learning models [J]. Systems Engineering and Electronics, 2023, 45(11): 3465-3473. |
[10] | Shiyang HE, Ling WANG, Daiyin ZHU, Jun QIAN. Thunderstorm prediction method based on spatiotemporal memory decoupling RNN [J]. Systems Engineering and Electronics, 2023, 45(11): 3474-3480. |
[11] | Haoran LI, Wei XIONG, Yaqi CUI. An association method between SAR images and AIS information based on depth feature fusion [J]. Systems Engineering and Electronics, 2023, 45(11): 3491-3497. |
[12] | Ce JI, Bohan SONG, Rong GENG, Minjun LIANG. Deep learning based channel estimation for OFDM systems in fast time-varying channel [J]. Systems Engineering and Electronics, 2023, 45(11): 3649-3655. |
[13] | Jianli DING, Qiqi ZHANG, Jing WANG, Weigang HUO. ADS-B anomaly detection method based on Transformer-VAE [J]. Systems Engineering and Electronics, 2023, 45(11): 3680-3689. |
[14] | Ting SONG, Zezhao WU, Ai GAO, Jianping YUAN. CycleGAN-based data enhancement method for lunar surface images [J]. Systems Engineering and Electronics, 2023, 45(10): 3041-3048. |
[15] | Ruize LI, Shuanghui ZHANG, Yongxiang LIU. Computational efficient structural sparse ISAR imaging method based on convolutional ADMM-net [J]. Systems Engineering and Electronics, 2023, 45(1): 56-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||