Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (8): 2615-2622.doi: 10.12305/j.issn.1001-506X.2023.08.37
• Communications and Networks • Previous Articles Next Articles
Kai SHAO1,2,3,*, Ziqun DU1, Guangyu WANG1,3
Received:
2022-05-07
Online:
2023-07-25
Published:
2023-08-03
Contact:
Kai SHAO
CLC Number:
Kai SHAO, Ziqun DU, Guangyu WANG. CSI feedback method for dynamically adjusting compression rate based on model pruning[J]. Systems Engineering and Electronics, 2023, 45(8): 2615-2622.
1 |
LIU Z Y , ZHANG L , DING Z . Exploiting bi-directional channel reciprocity in deep learning for low rate massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 889- 892.
doi: 10.1109/LWC.2019.2898662 |
2 |
SHEN W Q , DAI L L , LI Y , et al. Channel feedback codebook design for millimeter-wave massive MIMO systems relying on lens antenna array[J]. IEEE Wireless Communications Letters, 2018, 7 (5): 736- 739.
doi: 10.1109/LWC.2018.2818130 |
3 | LIN Y P, WU P H, PHOONG S M. Statistics-aided codebook designs for limited feedback beamforming systems over millimeterwave channels[C]//Proc. of the IEEE 23rd International Conference on Digital Signal Processing, 2018. |
4 |
SHEN W Q , DAI L L , ZHANG Y , et al. On the performance of channel-statistics-based codebook for massive MIMO channel feedback[J]. IEEE Trans.on Vehicular Technology, 2017, 66 (8): 7553- 7557.
doi: 10.1109/TVT.2017.2656908 |
5 |
ADHIKARY A , NAM J , AHN J Y , et al. Joint spatial division and multiplexing—the large-scale array regime[J]. IEEE Trans.on Information Theory, 2013, 59 (10): 6441- 6463.
doi: 10.1109/TIT.2013.2269476 |
6 |
JIANG Z , MOLISCH A F , CAIRE G , et al. Achievable rates of FDD massive MIMO systems with spatial channel correlation[J]. IEEE Trans.on Wireless Communications, 2015, 14 (5): 2868- 2882.
doi: 10.1109/TWC.2015.2396058 |
7 |
ADHIKARY A , Al SAFADI E , SAMIMI M K , et al. Joint spatial division and multiplexing for mm-wave channels[J]. IEEE Journal on Selected Areas in Communications, 2014, 32 (6): 1239- 1255.
doi: 10.1109/JSAC.2014.2328173 |
8 | JOUNG J , KURNIAWAN E , SUN S . Channel correlation mo-deling and its application to massive MIMO channel feedback reduction[J]. IEEE Trans.on Vehicular Technology, 2016, 66 (5): 3787- 3797. |
9 | CUI Y M, FANG Y L. Research on PCA data dimension reduction algorithm based on entropy weight method[C]//Proc. of the 2nd International Conference on Machine Learning, Big Data and Business Intelligence, 2020: 392-396. |
10 | LIU J E, WANG K, LIU H B. Distributed compressed sensing of doubly selective channel in massive MIMO systems[C]//Proc. of the World Conference on Computing and Communication Technologies, 2021: 21-25. |
11 | GE Y, ZENG Z, ZHANG T, et al. Spatio-temporalcorrelated channel feedback for massive MIMO systems[C]//Proc. of the IEEE/CIC International Conference on Communications in China, 2018. |
12 |
WEN C K , SHIH W T , JIN S . Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018, 7 (5): 748- 751.
doi: 10.1109/LWC.2018.2818160 |
13 |
LI X Y , WU H M . Spatio-temporal representation with deep neural recurrent network in MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2020, 9 (5): 653- 657.
doi: 10.1109/LWC.2020.2964550 |
14 |
GUO J , WEN C K , JIN S , et al. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: design, simulation, and analysis[J]. IEEE Trans.on Wireless Communications, 2020, 19 (4): 2827- 2840.
doi: 10.1109/TWC.2020.2968430 |
15 |
WANG Z , LI Y , WANG C , et al. A-OMP: an adaptive OMP algorithm for underwater acoustic OFDM channel estimation[J]. IEEE Wireless Communications Letters, 2021, 10 (8): 1761- 1765.
doi: 10.1109/LWC.2021.3079225 |
16 | ZHANG Z Y , CAI X , LI C G , et al. One-bit quantized massive MIMO detection based on variational approximate message passing[J]. IEEE Trans.on Signal Processing, 2017, 66 (9): 2358- 2373. |
17 |
LIU T T , XING L , SUN Z G . Study on convergence of plug-and-play ISTA with adaptive-kernel denoisers[J]. IEEE Signal Processing Letters, 2021, 28, 1918- 1922.
doi: 10.1109/LSP.2021.3111594 |
18 | HU J, SHEN L, SUN G. Squeeze-and-Excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
19 |
LOHIT S , KULKARNI K , KERVICHE R , et al. Convolutional neural networks for noniterative reconstruction of compressively sensed images[J]. IEEE Trans.on Computational Imaging, 2018, 4 (3): 326- 340.
doi: 10.1109/TCI.2018.2846413 |
20 | MOUSAVI A, DASARATHY G, BARANIUK R G. Deepcodec: adaptive sensing and recovery via deep convolutional neural networks[C]//Proc. of the 55th Annual Allerton Conference on Communication, Control, and Computing, 2017: 744-744. |
21 |
YAO H T , DAI F , ZHANG S L , et al. DR2-net: deep residual reconstruction network for image compressive sensing[J]. Neurocomputing, 2019, 359, 483- 493.
doi: 10.1016/j.neucom.2019.05.006 |
22 |
赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41 (10): 2501- 2508.
doi: 10.11999/JEIT190036 |
ZHAO X Q , SONG Z Y . Super-resolution reconstruction of deep residual network with multi-level skip connections[J]. Journal of Electronics & Information Technology, 2019, 41 (10): 2501- 2508.
doi: 10.11999/JEIT190036 |
|
23 | TANG Y H , WANG Y H , XU Y X , et al. Scop: scientific control for reliable neural network pruning[J]. Advances in Neural Information Processing Systems, 2020, 33, 10936- 10947. |
24 | HE Y, LIU P, WANG Z W, et al. Filter pruning via geometric median for deep convolutional neural networks acceleration[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4340-4349. |
25 |
VADERA S , AMEEN S . Methods for pruning deep neural networks[J]. IEEE Access, 2022, 10, 63280- 63300.
doi: 10.1109/ACCESS.2022.3182659 |
26 |
MEIJERINK A , MOLISCH A F . On the physical interpretation of the Saleh-Valenzuela model and the definition of its power delay profiles[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (9): 4780- 4793.
doi: 10.1109/TAP.2014.2335812 |
27 | ALKHATEEB A. DeepMIMO: a generic deep learning dataset for millimeter wave and massive MIMO applications[EB/OL]. [2022-05-05]. https://deepmimo.net/. |
[1] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
[2] | Tianshu CUI, Dong WANG, Zhen HUANG. Automatic modulation classification based on lightweight network for space cognitive communication [J]. Systems Engineering and Electronics, 2023, 45(7): 2220-2226. |
[3] | Yu JIANG, Qi YUAN, Zhitao HU, Weiwei WU, Xin GU. Airport arrival and departure delay time prediction based on meteorological factors [J]. Systems Engineering and Electronics, 2023, 45(6): 1722-1731. |
[4] | Yang CHEN, Canhui LIAO, Kun ZHANG, Jian LIU, Pengju WANG. A signal modulation indentification algorithm based on self-supervised contrast learning [J]. Systems Engineering and Electronics, 2023, 45(4): 1200-1206. |
[5] | Ye ZHANG, Yi HOU, Kewei OUYANG, Shilin ZHOU. Survey of univariate sequence data classification methods [J]. Systems Engineering and Electronics, 2023, 45(2): 313-335. |
[6] | Zhengtu SHAO, Dengrong XU, Wenli XU, Hanzhong WANG. Radar active jamming recognition based on LSTM and residual network [J]. Systems Engineering and Electronics, 2023, 45(2): 416-423. |
[7] | Ruize LI, Shuanghui ZHANG, Yongxiang LIU. Computational efficient structural sparse ISAR imaging method based on convolutional ADMM-net [J]. Systems Engineering and Electronics, 2023, 45(1): 56-70. |
[8] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[9] | Limin ZHANG, Kaiwen TAN, Wenjun YAN, Yuyuan ZHANG. Radar emitter recognition based on multi-level jumper residual network [J]. Systems Engineering and Electronics, 2022, 44(7): 2148-2156. |
[10] | Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network [J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822. |
[11] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[12] | Hong ZOU, Chenyang BAI, Peng HE, Yaping CUI, Ruyan WANG, Dapeng WU. Edge service placement strategy based on distributed deep learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1728-1737. |
[13] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[14] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[15] | Yunxiang YAO, Ying CHEN. Target tracking network based on dual-modal interactive fusion under attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 410-419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||