Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (8): 2623-2633.doi: 10.12305/j.issn.1001-506X.2023.08.38
• Reliability • Previous Articles Next Articles
Ran ZHANG, Tianyu LIU, Guang JIN
Received:
2022-09-14
Online:
2023-07-25
Published:
2023-08-03
Contact:
Tianyu LIU
CLC Number:
Ran ZHANG, Tianyu LIU, Guang JIN. Remaining useful life prediction of lithium-ion batteries based on Gaussian process regression with self-constructed kernel[J]. Systems Engineering and Electronics, 2023, 45(8): 2623-2633.
Table 1
Basic kernel function"
类别 | 名称 | 核函数形式 |
全局核 | 常数核 | |
白噪声核 | ||
线性核 | ||
多项式核 | ||
局部核 | 高斯核 | |
有理二次核 | ||
周期核 |
Table 2
Construction process of kernel function"
核函数构建过程 | NLL | BIC | |
K0 | - | - | |
K1 | -1 665.837 7 | -3 316.959 6 | |
K2 | -1 787.786 8 | -3 551.047 2 | |
K3 | -1 801.619 3 | -3 568.901 7 | |
K4 | -1 806.524 3 | -3 568.901 1 |
Table 3
Update results of model combination kernel function hyperparameter"
电池序号 | SP | LIN(x(1), x′(1)) | LIN(x(5), x′(5)) | SE(x(3), x′(3)) | WN(x, x′) | ||||||
c1* | σf1* | c2* | σf1* | l* | σf3* | σf4* | |||||
Batt#1 | 3 000 | -11.903 4 | -0.884 8 | -0.086 7 | -0.904 8 | 14.806 8 | -0.894 8 | -7.993 8 | |||
4 000 | -6.242 4 | -1.160 0 | -3.919 2 | -1.180 0 | 0.799 4 | -1.170 0 | -7.687 5 | ||||
5 000 | -2.580 6 | -0.883 0 | -2.271 6 | -0.903 0 | 0.694 4 | -0.893 0 | -7.568 8 | ||||
Batt#3 | 3 000 | -19.962 7 | -0.996 8 | -0.046 2 | -1.016 8 | 6.273 5 | -1.006 8 | -7.839 7 | |||
4 000 | -16.998 2 | -0.970 5 | -0.056 0 | -0.990 5 | 9.140 4 | -0.980 5 | -7.634 5 | ||||
5 000 | -14.827 2 | -0.148 2 | -0.063 8 | -0.168 2 | 8.791 6 | -0.158 2 | -7.694 7 | ||||
Batt#7 | 3 000 | -68.812 8 | -1.134 2 | -0.017 5 | -1.154 2 | 25.611 8 | -1.144 2 | -8.102 0 | |||
4 000 | -188.949 9 | -2.070 3 | -1.228 2 | -2.090 3 | 0.451 1 | -2.080 3 | -8.485 4 | ||||
5 000 | -79.739 9 | -1.687 3 | -0.654 3 | -1.707 3 | 0.753 6 | -1.697 3 | -7.510 1 |
Table 4
Prediction error analysis of RUL"
电池序号 | SP | RUL | MAE | RMSE | AE |
Batt#1 | 3 000 | 3 300 | 0.002 2 | 0.002 8 | 0 |
4 000 | 2 500 | 0.003 3 | 0.004 4 | 200 | |
5 000 | 1 700 | 0.007 3 | 0.008 4 | 400 AE | |
Batt#3 | 3 000 | 3 600 | 0.004 7 | 0.005 6 | 400 |
4 000 | 3 000 | 0.000 8 | 0.001 0 | 0 | |
5 000 | 2 100 | 0.001 7 | 0.001 9 | 100 | |
Batt#7 | 3 000 | - | 0.002 3 | 0.002 7 | - |
4 000 | - | 0.006 5 | 0.007 4 | - | |
5 000 | - | 0.002 2 | 0.002 8 | - |
Table 6
Error analysis of GPR models with different kernel functions"
电池序号 | 核结构 | SP | |||||||
3 000 | 4 000 | 5 000 | |||||||
MAE | RMSE | MAE | RMSE | MAE | RMSE | ||||
Batt#1 | Kbest* | 0.002 2 | 0.002 8 | 0.003 3 | 0.004 4 | 0.007 3 | 0.008 4 | ||
SEARD | 0.015 3 | 0.018 2 | 0.002 2 | 0.002 8 | 0.006 0 | 0.006 9 | |||
Batt#3 | Kbest* | 0.004 7 | 0.005 6 | 0.000 8 | 0.001 0 | 0.001 7 | 0.001 9 | ||
SEARD | 0.028 3 | 0.036 7 | 0.008 6 | 0.011 1 | 0.000 9 | 0.001 0 | |||
Batt#7 | Kbest* | 0.002 3 | 0.002 7 | 0.006 5 | 0.007 4 | 0.002 2 | 0.002 8 | ||
SEARD | 0.341 6 | 0.555 1 | 0.021 7 | 0.027 2 | 0.002 0 | 0.002 6 |
1 |
FRIEDRICH V B , TOBIAS M . A review on methods for state of health forecasting of lithium-ion batteries applicable in real-world operational conditions[J]. Journal of Energy Storage, 2023, 57, 105978.
doi: 10.1016/j.est.2022.105978 |
2 | 司小胜, 胡昌华. 数据驱动的设备剩余寿命预测理论及应用[M]. 北京: 国防工业出版社, 2016. |
SI X S , HU C H . Data-driven remaining useful life prediction theory and applications for equipment[M]. Beijing: National Defence Industry Press, 2016. | |
3 |
LI Y , LIU K L , FOLEY A M , et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 113, 109254.
doi: 10.1016/j.rser.2019.109254 |
4 | AN D , CHOI J H , KIM N H . Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab[J]. Reliability Engineering & System Safety, 2013, 115, 161- 169. |
5 |
WU T Z , LIU S Z , WANG Z K , et al. SOC and SOH joint estimation of lithium-ion battery based on improved particle filter algorithm[J]. Journal of Electrical Engineering and Technology, 2022, 17, 307- 317.
doi: 10.1007/s42835-021-00861-y |
6 | LI J F , WANG D F , DENG L , et al. Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries[J]. The Journal of Energy Storage, 2020, 31 (6): 101538. |
7 |
PRASAD G K , RAHN C D . Model based identification of aging parameters in lithium-ion batteries[J]. Journal of Power Sources, 2013, 232, 79- 85.
doi: 10.1016/j.jpowsour.2013.01.041 |
8 |
KHAKI B , DAS P . An equivalent circuit model for vanadium redox batteries via hybrid extended kalman filter and particle filter methods[J]. Journal of Energy Storage, 2021, 39, 102587.
doi: 10.1016/j.est.2021.102587 |
9 | HU C , JAIN G , TAMIRISA P , et al. Method for estimating capacity and predicting remaining useful life of lithium-ion battery[J]. Applied Energy, 2014, 126 (14): 182- 189. |
10 |
HU C , YE H , JAIN G , et al. Remaining useful life assessment of lithium-ion batteries in implantable medical devices[J]. Journal of Power Sources, 2018, 375, 118- 130.
doi: 10.1016/j.jpowsour.2017.11.056 |
11 |
LIU D T , LUO Y , LIU J , et al. Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm[J]. Neural Computer and Application, 2014, 25 (3-4): 557- 572.
doi: 10.1007/s00521-013-1520-x |
12 | ZHOU Y P , HUANG M H . Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016, 65 (10): 265- 273. |
13 | ZHANG J S , JIANG Y C , LI X , et al. An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty[J]. Reliability Engineering & System Safety, 2022, 222, 108357. |
14 |
XIAO B , XIAO B , LIU L S . Rapid measurement method for lithium-ion battery state of health estimation based on least squares support vector regression[J]. International Journal of Energy Research, 2021, 45 (4): 5695- 5709.
doi: 10.1002/er.6194 |
15 | LI Y X, SONG L, YI R Q, et al. An RUL prediction approach for lithium-ion batteries based on FIG and SVM with multi-kernel[C]//Proc. of the 7th Asia Conference on Power and Electrical Engineering, 2022: 2101-2105. |
16 |
WU J , ZHANG C B , CHEN Z H . An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173, 134- 140.
doi: 10.1016/j.apenergy.2016.04.057 |
17 |
CHEN X , WEN J P , LI X H , et al. SOH prediction of lithium battery based on IC curve feature and BP neural network[J]. Energy, 2022, 261, 125234.
doi: 10.1016/j.energy.2022.125234 |
18 |
LIN H Y , KANG L Y , XIE D , et al. Online state-of-health estimation of lithium-ion battery based on incremental capacity curve and BP neural network[J]. Batteries, 2022, 8 (4): 29- 48.
doi: 10.3390/batteries8040029 |
19 |
ZHAO J H , ZHU Y , ZHANG B , et al. Method of predicting SOH and RUL of lithium-ion battery based on the combination of LSTM and GPR[J]. Sustainability, 2022, 14 (19): 11865.
doi: 10.3390/su141911865 |
20 |
UGUR Y , ABDULLAH T A , HIKMET Y . A novel method for SOH prediction of batteries based on stacked LSTM with quick charge data[J]. Applied Artificial Intelligence, 2021, 35 (6): 421- 439.
doi: 10.1080/08839514.2021.1901033 |
21 | XIA F , WANG K G , CHEN J J . State-of-health prediction for lithium-ion batteries based on complete ensemble empirical mode decomposition with adaptive noise-gate recurrent unit fusion model[J]. Energy Technology, 2022, 10 (4): 2194- 4288. |
22 |
WU J , CHEN J X , FENG X , et al. State of health estimation of lithium-ion batteries using autoencoders and ensemble learning[J]. Journal of Energy Storage, 2022, 55, 105708.
doi: 10.1016/j.est.2022.105708 |
23 | ZHANG Y Q, ZHANG H F, TIAN Z W. The application of Gaussian process regression in state of health prediction of lithium-ion batteries[C]//Proc. of the IEEE Advanced Information Technology, Electronic and Automation Control Conference, 2018: 515-519. |
24 |
刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47 (6): 1285- 1292.
doi: 10.3969/j.issn.0372-2112.2019.06.015 |
LIU Y F , ZHAO G Q , PENG X Y . A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47 (6): 1285- 1292.
doi: 10.3969/j.issn.0372-2112.2019.06.015 |
|
25 |
韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10 (4): 1432- 1438.
doi: 10.19799/j.cnki.2095-4239.2021.0109 |
HAN Y F , XIE J , CAI T , et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10 (4): 1432- 1438.
doi: 10.19799/j.cnki.2095-4239.2021.0109 |
|
26 |
MA G J , WANG Z D , LIU W B , et al. A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries[J]. Knowledge-Based Systems, 2023, 259, 110012.
doi: 10.1016/j.knosys.2022.110012 |
27 | 吕佳朋, 史贤俊, 王康. 基于高斯过程回归的电池容量预测模型[J]. 电子测量技术, 2020, 43 (3): 43- 48. |
LYU J P , SHI X J , WANG K . Battery capacity prediction model based on Gaussian process regression[J]. Electronic Measurement Technology, 2020, 43 (3): 43- 48. | |
28 |
LIU K L , LI Y , HU X S , et al. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (6): 3767- 3777.
doi: 10.1109/TII.2019.2941747 |
29 | 吕佳朋, 史贤俊. 基于AdaBoost的GPR预测算法研究及应用[J]. 电光与控制, 2020, 27 (6): 43-46, 62 |
LYU J P , SHI X J . Research of GPR prediction algorithm based on AdaBoost and its application[J]. Electronics Optics & Control, 2020, 27 (6): 43-46, 62 | |
30 |
GONG D L , GAO Y , KOU Y L , et al. State of health estimation for lithium-ion battery based on energy features[J]. Energy, 2022, 257, 124812.
doi: 10.1016/j.energy.2022.124812 |
31 |
WANG J W , DENG Z W , YU T , et al. State of health estimation based on modified Gaussian process regression for lithium-ion batteries[J]. Journal of Energy Storage, 2022, 51, 104512.
doi: 10.1016/j.est.2022.104512 |
32 |
WEI M , YE M , WANG Q , et al. A data-driven approach with error compensation and uncertainty quantification for remaining useful life prediction of lithium-ion battery[J]. International Journal of Energy Research, 2022, 46 (14): 20121- 20135.
doi: 10.1002/er.8321 |
33 | ZHANG Y B , JIA Y X , QIU G D , et al. Stochastic filtering residual useful life prediction model based on metal concentration gradient in lubricant[J]. Systems Engineering-Theory & Practice, 2014, 34 (6): 35- 42. |
34 | RASMUSSEN C E , WILLIAMS C . Gaussian processes for machine learning[M]. Boston: MIT Press, 2005. |
35 | GHAHRAMANI Z . The automatic statistician[J]. Significance, 2015, 12 (1): 14- 15. |
36 | BIRKL C. Oxford battery degradation dataset 1[EB/OL]. [2022-09-05]. https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac. |
[1] | Xiaojia YAN, Weige LIANG, Gang ZHANG, Bo SHE, Fuqing TIAN. Prediction method for mechanical equipment based on RCNN-ABiLSTM [J]. Systems Engineering and Electronics, 2023, 45(3): 931-940. |
[2] | Jingfeng LI, Yunxiang CHEN, Huachun XIANG, Zhongyi CAI. Remaining useful life prediction for aircraft engine based on LSTM-DBN [J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644. |
[3] | Gaoyue WANG, Huijun ZHANG, Xian CHEN, Hao LI. Prediction method of spacecraft flight capability in atmospheric entry phase based on Gaussian process regression [J]. Systems Engineering and Electronics, 2020, 42(10): 2334-2339. |
[4] | ZHANG Yan, WANG Cunsong, LU Ningyun, JIANG Bin. Remaining useful life prediction for aeroengine based on thesimilarity of degradation characteristics [J]. Systems Engineering and Electronics, 2019, 41(6): 1414-1421. |
[5] | MENG Yang, GAO She-sheng, WANG Wei. Square-root unscented particle filter based on Gaussian process regression [J]. Systems Engineering and Electronics, 2015, 37(12): 2817-2822. |
[6] | WEI Xi-qing, SONG Shen-min, ZHANG Bao-qun. Estimation of formation spacecraft relative motion based on model-free unscented particle filter [J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1215-1219. |
[7] | LI Peng,SONG Shen-min,CHEN Xing-lin,DUAN Guang-ren. Square root unscented Kalman filter incorporating Gaussian process regression [J]. Journal of Systems Engineering and Electronics, 2010, 32(6): 1281-1285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||