Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (8): 2641-2649.doi: 10.12305/j.issn.1001-506X.2024.08.12
• Sensors and Signal Processing • Previous Articles
Xiaoxuan CHEN1, Shuwen XU2, Shaohai HU1,*, Xiaole MA1
Received:
2023-05-29
Online:
2024-07-25
Published:
2024-08-07
Contact:
Shaohai HU
CLC Number:
Xiaoxuan CHEN, Shuwen XU, Shaohai HU, Xiaole MA. Infrared and visible light image fusion based on convolution and self attention[J]. Systems Engineering and Electronics, 2024, 46(8): 2641-2649.
Table 1
Comparison of objective metrics of different fused images on TNO dataset"
算法 | CC | EN | FMI_w | MI | SD | VIF |
CVT[ | 0.474 3 | 6.431 4 | 0.433 4 | 1.575 7 | 8.309 2 | 0.599 6 |
NSCT[ | 0.481 7 | 6.419 2 | 0.448 0 | 1.679 7 | 8.294 3 | 0.688 8 |
Wavelet[ | 0.487 8 | 6.295 0 | 0.360 0 | 1.774 3 | 8.194 3 | 0.619 6 |
MSVD[ | 0.493 8 | 6.227 6 | 0.303 5 | 1.877 8 | 8.140 3 | 0.613 5 |
GTF[ | 0.322 8 | 6.635 3 | 0.436 2 | 2.422 5 | 8.684 0 | 0.565 6 |
DenseFuse[ | 0.499 4 | 6.174 0 | 0.417 7 | 2.143 4 | 8.100 6 | 0.608 8 |
DeepFuse[ | 0.498 7 | 6.756 3 | 0.422 2 | 2.226 8 | 8.796 1 | 0.778 2 |
FusionDN[ | 0.460 2 | 7.395 5 | 0.362 7 | 2.162 2 | 9.537 5 | 0.862 3 |
U2Fusion[ | 0.501 0 | 6.757 1 | 0.362 0 | 1.804 5 | 9.011 0 | 0.751 4 |
本文算法 | 0.478 0 | 6.557 7 | 0.504 1 | 3.592 5 | 9.672 3 | 0.929 7 |
Table 2
Comparison of objective metrics of different fused images on LLVIP dataset"
算法 | CC | EN | FMI_w | MI | SD | VIF |
CVT[ | 0.699 8 | 6.539 9 | 0.361 0 | 2.124 4 | 8.409 2 | 0.778 5 |
NSCT[ | 0.702 7 | 6.539 3 | 0.393 2 | 2.238 0 | 7.334 6 | 0.891 9 |
Wavelet[ | 0.709 5 | 6.475 8 | 0.325 0 | 2.421 5 | 8.384 1 | 0.799 0 |
MSVD[ | 0.646 8 | 6.405 5 | 0.261 3 | 2.604 9 | 8.374 5 | 0.790 1 |
GTF[ | 0.578 7 | 6.519 0 | 0.343 8 | 3.338 8 | 8.553 3 | 0.764 7 |
DenseFuse[ | 0.716 0 | 6.377 2 | 0.311 6 | 2.998 3 | 8.398 8 | 0.792 1 |
DeepFuse[ | 0.700 8 | 6.523 1 | 0.338 3 | 2.789 5 | 8.274 7 | 0.877 1 |
FusionDN[ | 0.672 4 | 6.198 9 | 0.320 3 | 2.626 1 | 8.550 7 | 0.893 3 |
U2Fusion[ | 0.696 0 | 5.942 9 | 0.283 5 | 2.351 3 | 8.102 0 | 0.639 4 |
本文算法 | 0.698 1 | 6.753 4 | 0.416 3 | 3.7140 | 8.680 1 | 0.894 2 |
Table 3
Comparison of objective metrics of different fused images on M3FD dataset"
算法 | CC | EN | FMI_w | MI | SD | VIF |
CVT[ | 0.577 2 | 6.643 8 | 0.388 4 | 2.155 7 | 8.925 2 | 0.802 4 |
NSCT[ | 0.583 1 | 6.606 4 | 0.420 6 | 2.477 9 | 8.919 2 | 0.904 8 |
Wavelet[ | 0.582 7 | 6.531 7 | 0.351 0 | 2.548 2 | 8.879 3 | 0.746 2 |
MSVD[ | 0.582 0 | 6.444 8 | 0.276 3 | 2.678 5 | 8.805 5 | 0.738 4 |
GTF[ | 0.455 5 | 7.298 9 | 0.400 9 | 3.860 2 | 9.809 0 | 0.769 6 |
DenseFuse[ | 0.585 7 | 6.420 4 | 0.384 4 | 2.860 9 | 8.195 1 | 0.733 3 |
DeepFuse[ | 0.568 0 | 6.592 7 | 0.410 3 | 3.012 1 | 9.394 0 | 0.908 2 |
FusionDN[ | 0.560 7 | 7.460 6 | 0.342 0 | 3.023 2 | 9.974 6 | 0.934 0 |
U2Fusion[ | 0.572 4 | 6.926 0 | 0.344 4 | 2.757 4 | 9.479 8 | 0.929 9 |
本文算法 | 0.563 9 | 7.626 1 | 0.495 9 | 3.948 3 | 9.506 7 | 0.943 8 |
Table 4
Ablation experiments on TNO dataset"
实验类型 | 对照设置 | CC | EN | M3FD | MI | SD | VIF |
特征提取模块的消融实验 | 卷积模块 | 0.459 8 | 6.740 4 | 0.451 1 | 2.087 7 | 8.650 2 | 0.762 7 |
卷积与自注意力模块 | 0.418 0 | 6.557 7 | 0.504 1 | 3.592 5 | 9.672 3 | 0.929 7 | |
融合模块的消融实验 | 相加 | 0.477 6 | 6.695 9 | 0.403 4 | 2.079 8 | 8.526 6 | 0.650 7 |
自注意力机制 | 0.476 2 | 6.723 0 | 0.441 1 | 2.387 7 | 8.649 5 | 0.794 3 | |
相加式块残差融合模块 | 0.476 2 | 6.857 8 | 0.496 8 | 3.590 4 | 9.669 6 | 0.929 3 | |
嵌入式块残差融合模块 | 0.418 | 6.557 7 | 0.504 1 | 3.592 5 | 9.672 3 | 0.929 7 | |
损失函数超参数的消融实验 | 600 | 0.459 3 | 6.556 8 | 0.497 1 | 3.585 8 | 9.658 8 | 0.927 9 |
500 | 0.473 1 | 6.732 5 | 0.499 7 | 3.580 4 | 9.599 7 | 0.903 2 | |
400 | 0.491 7 | 6.551 2 | 0.502 2 | 3.580 2 | 9.532 5 | 0.890 9 | |
300本文算法 | 0.41 8 | 6.557 7 | 0.504 1 | 3.592 5 | 9.672 3 | 0.929 7 |
1 | 李舒涵, 许宏科, 武治宇. 基于红外与可见光图像融合的交通标志检测[J]. 现代电子技术, 2020, 43 (3): 45- 49. |
LI S H , XU H K , WU Z Y . Traffic sign detection based on infrared and visible image fusion[J]. Modern Electronics Technique, 2020, 43 (3): 45- 49. | |
2 |
BIKASH M , SANJAY A , RUTUPARNA P , et al. A survey on region based imagefusion methods[J]. Information Fusion, 2019, 48, 119- 132.
doi: 10.1016/j.inffus.2018.07.010 |
3 | 李霖, 王红梅, 李辰凯. 红外与可见光图像深度学习融合方法综述[J]. 红外与激光工程, 2022, 51 (12): 337- 356. |
LI L , WANG H M , LI C K . A review of deep learning fusion methods for infrared and visible images[J]. Infrared and Laser Engineering, 2022, 51 (12): 337- 356. | |
4 | 王新赛, 冯小二, 李明明. 基于能量分割的空间域图像融合算法研究[J]. 红外技术, 2022, 44 (7): 726- 731. |
WANG X S , FENG X E , LI M M . Research on spatial domain image fusion algorithm based on energy segmentation[J]. Infrared Technology, 2022, 44 (7): 726- 731. | |
5 |
LIU Y , CHEN X , PENG H , et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36, 191- 207.
doi: 10.1016/j.inffus.2016.12.001 |
6 | RAM P K, SAI S V, VENKATESH B R. DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 4714-4722. |
7 |
MA J Y , YU W , LIANG P W , et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48, 11- 26.
doi: 10.1016/j.inffus.2018.09.004 |
8 | XU H, MA J Y, LE Z L, et al. FusionDN: a unified densely connected network for image fusion[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2020: 12484-12491 |
9 |
XIAO B , XU B C , BI X L , et al. Global-feature encoding U-Net (GEU-Net) for multi-focus image fusion[J]. IEEE Trans. on Image Processing, 2021, 30, 163- 175.
doi: 10.1109/TIP.2020.3033158 |
10 |
FANG Y M , YAN J B , LI L D , et al. No reference quality assessment for screen content images with both local and global feature representation[J]. IEEE Trans. on Image Processing, 2018, 27 (4): 1600- 1610.
doi: 10.1109/TIP.2017.2781307 |
11 | QU L H, LIU S L, WANG M N, et al. TransMEF: a transformer-based multi-exposure image fusion framework using self-supervised multi-task learning[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2022: 2126-2134. |
12 |
MA J Y , TANG L F , FAN F , et al. SwinFusion: cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (7): 1200- 1217.
doi: 10.1109/JAS.2022.105686 |
13 |
TANG W , HE F Z , LIU Y , et al. DATFuse: infrared and visible image fusion via dual attention transformer[J]. IEEE Trans. on Circuits and System for Video Technology, 2023, 33 (7): 3159- 3172.
doi: 10.1109/TCSVT.2023.3234340 |
14 | PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 367-376. |
15 | WANG J X , XI X L , LI D M , et al. FusionGRAM: an infrared and visible image fusion framework based on gradient residual and attention mechanism[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72, 5005412. |
16 | QIU Y J, WANG R X, TAO D P, et al. Embedded block residual network: a recursive restoration model for single-image super-resolution[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 4179-4188. |
17 |
TOET A . The TNO multiband image data collection[J]. Data in Brief, 2017, 15, 249- 251.
doi: 10.1016/j.dib.2017.09.038 |
18 | JIA X Y, ZHU C, LI M Z, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proc. of the IEEE International Conference on Computer Vision, 2021: 3496-3504. |
19 | LIU J Y, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-5811. |
20 | EMADALDEN A, UZAIR A B, HUANG M X, et al. Image fusion based on discrete cosine transform with high compression[C]//Proc. of the 7th International Conference on Signal and Image Processing, 2022: 606-610. |
21 |
ZHU Z Q , ZHENG M Y , QI G Q , et al. A phase congruency and local laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7, 20811- 20824.
doi: 10.1109/ACCESS.2019.2898111 |
22 | GUO H, CHEN J Y, YANG X, et al. Visible-infrared image fusion based on double-density wavelet and thermal exchange optimization[C]//Proc. of the IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference, 2021: 2151-2154. |
23 |
NAIDU VPS . Image fusion technique using multi-resolution singular value decomposition[J]. Defence Science Journal, 2011, 61, 479- 484.
doi: 10.14429/dsj.61.705 |
24 |
MA J Y , CHEN C , LI C , et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31, 100- 109.
doi: 10.1016/j.inffus.2016.02.001 |
25 |
LI H , WU X J . DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Trans. on Image Processing, 2019, 28 (5): 2614- 2623.
doi: 10.1109/TIP.2018.2887342 |
26 |
XU H , MA J Y , JIANG J J , et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 44 (1): 502- 518.
doi: 10.1109/TPAMI.2020.3012548 |
27 | LIU W, DRAGOMIR A, DUMITRU E, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37. |
28 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
29 | REDMON J, FARHAD A. Yolov3: an incremental improvement[EB/OL]. [2023-05-29]. http://arxiv.org/pdf/1804.02767 |
30 | ALEXEY B, WANG C Y, LIAO H Y. Yolov4: optimal speed and accuracy of object detection[EB/OL]. [2023-05-29]. https://arxiv.org/abs/2004.10934. |
31 | GE Z, LIU S T, WANG F, et al. Yolox: exceeding Yolo series in 2021[EB/OL]. [2023-05-29]. https://arxiv.org/abs/2107.08430. |
[1] | Qianglong WANG, Xiaoguang GAO, Bicong WU, Zijian HU, Kaifang WAN. Review of research on restricted Boltzmann machine and its variants [J]. Systems Engineering and Electronics, 2024, 46(7): 2323-2345. |
[2] | Xiantao SUN, Wangyang JIANG, Wenjie CHEN, Weihai CHEN, Yali ZHI. Object grasp pose detection based on the region of interest [J]. Systems Engineering and Electronics, 2024, 46(6): 1867-1877. |
[3] | Xuemei CHEN, Zhiheng LIU, Suiping ZHOU, Hang YU, Yanming LIU. Road extraction from high-resolution remote sensing images based on HRNet [J]. Systems Engineering and Electronics, 2024, 46(4): 1167-1173. |
[4] | Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation [J]. Systems Engineering and Electronics, 2024, 46(3): 831-838. |
[5] | Yali ZHANG, Wei FENG, Yinghui QUAN, Mengdao XING. Ship recognition algorithm based on multi-level collaborative fusion of multi-source remote sensing images [J]. Systems Engineering and Electronics, 2024, 46(2): 407-418. |
[6] | Duanyang SHI, Qiang LIN, Bing HU, Xiaoshuai DU. Target detection method of primary surveillance radar based on YOLO [J]. Systems Engineering and Electronics, 2024, 46(1): 143-151. |
[7] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
[8] | Huiying WANG, Chunping WANG, Qiang FU, Zishuo HAN, Dongdong ZHANG. Infrared and low illumination image fusion based on image features [J]. Systems Engineering and Electronics, 2023, 45(8): 2395-2404. |
[9] | Kai SHAO, Ziqun DU, Guangyu WANG. CSI feedback method for dynamically adjusting compression rate based on model pruning [J]. Systems Engineering and Electronics, 2023, 45(8): 2615-2622. |
[10] | Tianshu CUI, Dong WANG, Zhen HUANG. Automatic modulation classification based on lightweight network for space cognitive communication [J]. Systems Engineering and Electronics, 2023, 45(7): 2220-2226. |
[11] | Yu JIANG, Qi YUAN, Zhitao HU, Weiwei WU, Xin GU. Airport arrival and departure delay time prediction based on meteorological factors [J]. Systems Engineering and Electronics, 2023, 45(6): 1722-1731. |
[12] | Yang CHEN, Canhui LIAO, Kun ZHANG, Jian LIU, Pengju WANG. A signal modulation indentification algorithm based on self-supervised contrast learning [J]. Systems Engineering and Electronics, 2023, 45(4): 1200-1206. |
[13] | Ye ZHANG, Yi HOU, Kewei OUYANG, Shilin ZHOU. Survey of univariate sequence data classification methods [J]. Systems Engineering and Electronics, 2023, 45(2): 313-335. |
[14] | Zhengtu SHAO, Dengrong XU, Wenli XU, Hanzhong WANG. Radar active jamming recognition based on LSTM and residual network [J]. Systems Engineering and Electronics, 2023, 45(2): 416-423. |
[15] | Renfei CHEN, Yong PENG, Zhongwen LI. A novel detector for floating objects based on continual unsupervised domain adaptation strategy [J]. Systems Engineering and Electronics, 2023, 45(11): 3391-3401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||