

系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 198-208.doi: 10.12305/j.issn.1001-506X.2026.01.18
收稿日期:2024-09-03
出版日期:2026-01-25
发布日期:2026-02-11
通讯作者:
马立群
E-mail:lqma@cauc.edu.cn
作者简介:刘锦周(1999—),男,硕士研究生,主要研究方向为民用航空器适航审定工程
Liqun MA(
), Jinzhou LIU, Ziteng LIU
Received:2024-09-03
Online:2026-01-25
Published:2026-02-11
Contact:
Liqun MA
E-mail:lqma@cauc.edu.cn
摘要:
为解决现有民用航空器适航规章对氢能源动力飞机的设计特征存在潜在适用性差异和覆盖性不全问题,对氢能源动力飞机适航基础分析。首先,以民用航空正常类飞机适航规章为基础,运用基于模型的系统工程(model-based systems engineering,MBSE)方法,利用系统建模语言构建了适航条款自动化分析框架。然后,基于给定的适航条款适用性分析准则与流程,对3类不同氢能源飞机进行了架构分析与适航需求对比。研究结果表明,MBSE方法能够为氢能源动力飞机的设计和适航审定提供有效的决策支持,提升审定效率。所提方法可以兼顾优先性、一致性和正确性,确保适用性判断准确可靠,避免经验判断误差。
中图分类号:
马立群, 刘锦周, 刘子腾. 基于MBSE的氢能源动力飞机适航基础分析[J]. 系统工程与电子技术, 2026, 48(1): 198-208.
Liqun MA, Jinzhou LIU, Ziteng LIU. An MBSE fundamental airworthiness basis analysis for hydrogen energy power aircraft[J]. Systems Engineering and Electronics, 2026, 48(1): 198-208.
表1
部分适航适用性判别结果"
条款 | 氢涡轮风扇发动机 | 氢涡轮电动风扇发动机 | 氢燃料电池电动风扇发动机 |
| 23.991(a)(2)(ii) 23.991(a)(2)(iii) | ◇ | ◇ | ◇ |
| 23.973(b) | ◇ | ◇ | ◇ |
| 23.973(d) | ◇ | ◇ | ◇ |
| 23.993(a) 23.993(c) | ◇ | ◇ | ◇ |
| 23.995(a)(2) 23.995(f) | ? | ? | ? |
| 23.969 | ? | ? | ? |
| 23.963(d) 23.965(a)(1) | ? | ? | ? |
| 23.963(a) | ? | ? | ? |
| 23.951(b)(1) 23.951(b)(2) | ? | ? | ? |
| 23.951(a) | ? | ? | ? |
| ◆ | ◆ | ◆ | |
| ◆ | ◆ | ◇ | |
| ◆ | ◆ | ◆ | |
| ◆ | ◆ | ◇ | |
| ◆ | ◆ | ◇ | |
| 23.903(b)(1) 23.903(b)(2) | ◆ | ? | ? |
| ◆ | ◆ | ◇ | |
| ◆ | ◆ | ◇ | |
| ◆ | ◆ | ◇ | |
| ◆ | ◆ | ◆ | |
| ◆ | ◆ | ◆ |
| 1 |
TEPYLO N, STRAUBINGER A, LALIBERTE J. Public perception of advanced aviation technologies: a review and roadmap to acceptance[J]. Progress in Aerospace Sciences, 2023, 138, 100899.
doi: 10.1016/j.paerosci.2023.100899 |
| 2 | PEARCE B. Outlook for air transport and the airline industry[EB/OL]. [2024-09-01].https://www.sipotra.it/wp-content/uploads/2020/11/Outlook-for-Air-Transport-and-the-Airline-Industry.pdf. |
| 3 |
et al. Sustainable hydrogen energy in aviation—a narrative review[J]. International Journal of Hydrogen Energy, 2024, 52, 1026- 1045.
doi: 10.1016/j.ijhydene.2023.02.086 |
| 4 |
J R R A. Hydrogen-powered aircraft: fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sciences, 2023, 141, 100922.
doi: 10.1016/j.paerosci.2023.100922 |
| 5 | OHMSTEDE K, BARKE A, SPENGLER T S. Green hydrogen as a driver for a more sustainable aviation sector: market entry scenarios and demand forecasts[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 2024. |
| 6 | 张扬军, 彭杰, 钱煜平, 等. 氢能航空的关键技术与挑战[J]. 航空动力, 2021(1): 20−23. |
| ZHANG Y J, PENG J, QIAN Y P. Key Technologies and Challenges of Hydrogen Powered Aviation [J]. Aerospace Power, 2021(1): 20−23. | |
| 7 | MACIOROWSKI D, LUDWICZAK A, KOZAKIEWICZ A. Hydrogen, the future of aviation[J]. Combustion Engines , 2024, 197(2): 5-12. |
| 8 | BONING Y, MUHRARREM M, WIMMIAM A C. An approach to evaluate fleet level CO2 impact of introducing liquid hydrogen aircraft to a world-wide network[C]//Proc. of the AIAA Aviation Forum, 2022. |
| 9 | KHANDELWAL B, SEKARAN P, KARAKURT A, et al. A review of hydrogen as a fuel for future air transport[C]//Proc. of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2012. |
| 10 | 张燕, 李小群, 李彬. 氢能飞机的商业化趋势与启示[J]. 空运商务, 2022(8): 22-26. |
| ZHANG Y, LI X Q, LI B. Trends and insights into the commercialization of hydrogen-powered aircraft[J]. Air Transport & Business, 2022(8): 22-26. | |
| 11 | 赖耀胜, 李龙. 氢能飞机发展现状分析[J]. 航空动力, 2021(6): 37-40. |
| LAI Y S, LI L, Analysis of the current status of hydrogen aircraft development [J]. Aerospace Power, 2021(6): 37-40. | |
| 12 | 刘佳育, 罗纳, 李俊辰, 等. 氢能航空发动机研究现状及发展制约因素[J]. 材料研究与应用, 2024, 18(2): 299-308. |
| LIU J Y, LUO N, LI J C, et al. Current status of hydrogen aero-engine research and development constraints[J]. Materials Research and Application, 2024, 18(2): 299-308. | |
| 13 | MUKHOPADHAYA J. Performance analysis of fuel cell retrofit aircraft[EB/OL].[2024-09-01]. https://theicet.org/wp-content/uploads/2023/08/Aircraft-retrofit-white-paper-A4-v3.pdf. |
| 14 | GUENAN K. Hydrogen plane ZEROe: technological challenges and ecosystem impacts[J]. Industrial Realities, 2024, 2: 99−103. |
| 15 | 曹冠杰, 王业辉, 孙小金. 氢能航空发展现状分析[J]. 航空动力, 2022, (2): 29- 33. |
| CAO G J, WANG Y H, SUN X J. Analysis of the current status of hydrogen aviation development[J]. Aerospace Power, 2022, (2): 29- 33. | |
| 16 | CCAR-21-R4. 民用航空产品和零部件合格审定规定[S]. 北京: 中国民用航空局, 2017. |
| CCAR-21-R4. The regulation for the certification of civil aircraft products and parts [S]. Beijing: Civil Aviation Administration of China, 2017. | |
| 17 | AP-21-AA-2015-37R1. 轻型运动航空器型号设计批准审定程序[S]. 北京: 中国民用航空局, 2015. |
| AP-21-AA-2015-37R1. Light sport aircraft type design approval review procedures[S]. Beijing: Civil Aviation Administration of China, 2015 | |
| 18 | AP-21-AA-2023-17. 颁发专用条件、批准豁免和做出等效安全水平结论的程序[S]. 北京: 中国民用航空局, 2023. |
| AP-21-AA-2023-17. Procedures for issuing special conditions, granting exemptions, and making conclusions about equivalent safety levels[S]. Beijing: Civil Aviation Administration of China, 2023. | |
| 19 | BENDARKAR M V, XIE J, BRICENO S I, et al. A model-based aircraft certification framework for normal category airplanes[C]//Proc. of the AIAA Aviation 2020 Forum, 2020. |
| 20 | BENDARKAR M V, HARRISON E, FIELDS T M, et al. An extended MBSE framework for regulatory analysis of aircraft architectures[C]// Proc. of the AIAA Aviation Forum, 2023. |
| 21 | FRIEDLAND B, MALONE R, HERROLD J. Systems engineering a model based systems engineering tool suite: the boeing approach[C]//Proc. of the INCOSE International Symposium, 2016. |
| 22 | MURPHY J. NASA’s MBSE approach for advanced air mobility[C]//Proc. of the International Council on Systems Engineering, 2022. |
| 23 | CHABIBI B, DOUCHE A, ANWAR A, et al. Integrating SysML with simulation environments (Simulink) by model transformation approach[C]//Proc. of the IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, 2016. |
| 24 | SANFORD F, ALAN M, RICK S. 系统建模语言SysML实用指南 [M]. 陆亚东, 陈向东, 张利强, 等, 译. 北京: 国防工业出版社, 2021. |
| SANFORD F, ALAN M, RICK S. A practical guide to SysML: the systems modeling language[M]. LU Y D, CHEN X D, ZHANG L Q, et al. Trans. Beijing: National Defense Industry Press, 2021. | |
| 25 | AKUNDI A, ONTIVEROS J, LUNA S. Text-to-model transformation: natural language-based model generation framework[J]. Systems, 2024, 12(9): 369. |
| 26 | HILL T R, CARNEVALE A E, MORRIS-ECKART A, et al. NASA's use of MBSE and SysML modeling to architect the future of human exploration[C]//Proc. of the INCOSE International Symposium, 2024. |
| 27 | FRIEDENTHAL S, MOORE A, STEINER R. A practical guide to SysML: the systems modeling language[M]. Burlington: Morgan Kaufmann, 2014. |
| 28 | CONROY M, MAZZONE R, LIN W. NASA integrated model-centric architecture (NIMA) model use and re-use[C]//Proc. of the IEEE Aerospace Conference, 2013. |
| 29 | KHAN M O, DUBOS G F, TIRONA J, et al. Model-based verification and validation of the SMAP uplink processes[C]//Proc. of the IEEE Aerospace Conference, 2013. |
| 30 | MANFREDI M, TIRONE L. Application of the model based systems engineering approach for modern warship design[C]//Proc. of the INCOSE International Symposium, 2018. |
| 31 | 蔡昀彤. 浅析MBSE在国际民用航空领域的应用[J]. 科技创新导报, 2017, (18): 17- 18. |
| CAI Y. T. An analysis of the application of MBSE in the field of international civil aviation[J]. Science and Technology Innovation Herald, 2017, (18): 17- 18. | |
| 32 | 郑党党, 吴颖, 任丽强. 飞机设计基于模型的系统工程技术研究与应用[C]// 第21届中国系统仿真技术及其应用学术年会, 2020. |
| ZHENG D D, WU Y, REN L Q. Research on model based systems engineering and application in aircraft design[C]//Proc. of the 21st Annual Conference on System Simulation Technology and its Application in China, 2025. | |
| 33 | 陈宣文, 黄晖, 戴小氐. MBSE在航空飞行控制系统的应用研究[J]. 航空工程进展, 2024, 15(2): 152−165 |
| CHEN X W, HUANG H, DAI X D. Application of MBSE in aviation flight control system[J]. Advances in Aeronautical Science and Engineering, 2024, 15(2): 152−165. | |
| 34 |
G P. Application of agile model-based systems engineering in aircraft conceptual design[J]. The Aeronautical Journal, 2019, 123 (1268): 1561- 1601.
doi: 10.1017/aer.2019.53 |
| 35 | 王乾, 郑党党, 佟瑞庭, 等. 基于MBSE的民机飞行控制系统架构设计[J]. 系统工程与电子技术, 2024, 46 (9): 3050- 3059. |
| WANG Q, ZHENG D D, TONG R T, et al. Design of civil aircraft flight control system architecture based on MBSE[J]. Systems Engineering and Electronics, 2024, 46 (9): 3050- 3059. | |
| 36 | 赵良玉, 叶俊杰, 何琪, 等. 基于MBSE的民机起飞场景仿真[J]. 系统仿真学报, 2021, 33(10): 2499−2510. |
| ZHAO L Y, YE J J, HE Q, et al. Simulation of civil aircraft takeoff scenario based on MBSE [J]. Journal of System Simulation, 2021, 33(10): 2499−2509. | |
| 37 |
, et al. Hydrogen powered aircraft: the future of air transport[J]. Progress in Aerospace Sciences, 2013, 60, 45- 59.
doi: 10.1016/j.paerosci.2012.12.002 |
| 38 | SOLEYMANI M, MOSTAFAVI V, HEBERT M, et al. Hydrogen propulsion systems for aircraft, a review on recent advances and ongoing challenges[J]. International Journal of Hydrogen Energy, 2024, 91: 137−171. |
| 39 | 徐逸乐. 垂直起降航空器的适航审定[J]. 大飞机, 2024, (4): 16- 20. |
| XV Y L. Airworthiness certification of vertical take-off and landing aircraft[J]. Jetliner, 2024, (4): 16- 20. | |
| 40 | SC-21-002. 亿航 EH216-S 型无人驾驶航空器系统专用条件[S]. 北京: 中国民用航空局, 2022. |
| SC-21-002. Special conditions for EH216-S unmanned aircraft system[S]. Beijing: Civil Aviation Administration of China, 2022 | |
| 41 | CCAR-23-R3. 正常类、实用类、特技类和通勤类飞机适航规定[S]. 北京: 中国民用航空局, 2005. |
| CCAR-23-R3. Airworthiness regulations for normal, practical, aerobatic and commuter aircraft [S]. Beijing: Civil Aviation Administration of China, 2005. | |
| 42 | IZYGON M, WAGNER H, OKON S, et al. Facilitating R&M in spaceflight systems with MBSE[C]//Proc. of the Annual Reliability and Maintainability Symposium, 2016. |
| 43 | BLEU-LAINE M H, BENDARKAR M V, XIE J, et al. A model-based system engineering approach to normal category airplane airworthiness certification[C]//Proc. of the AIAA Aviation Forum, 2019. |
| 44 | DATTA S, ROY R, BENDARKAR M V, et al. MBSE-enabled risk reduction for certification of novel aircraft configurations[C]//Proc. of the AIAA Scitech, 2022. |
| 45 | EL-MALLAKH R S. Fuel for thought: the hydrogen-powered automobile[J]. Environment: Science and Policy for Sustainable Development, 1981, 23(3): 30−37. |
| [1] | 孟庆春, 杜非, 王彪, 张芹, 韩汶, 徐畅. 基于MBSE的危化品车辆监控预警系统设计[J]. 系统工程与电子技术, 2025, 47(7): 2224-2236. |
| [2] | 李特, 郭强, 战鹏. 基于MBSE的异构探测器系统架构设计方法[J]. 系统工程与电子技术, 2025, 47(6): 1930-1940. |
| [3] | 崔馨方, 陈祥文. MBSE在载人航天在轨物资补给任务中的应用[J]. 系统工程与电子技术, 2025, 47(5): 1551-1560. |
| [4] | 鲁金直, 王国新, 唐锡晋, 唐俊杰, 温跃杰, 唐剑, 张旸旸, 兰小平, 刘奇, 李俊霖, 马君达, 吴绶玄, 胡晓度. 面向空间智能的基于模型的系统工程方法[J]. 系统工程与电子技术, 2025, 47(12): 3877-3889. |
| [5] | 龚逸辉, 王国新, 阎艳, 吴绶玄, 董梦如, 袁永吉. 基于模型的系统工程中的架构模型质量综述:概念、框架和技术[J]. 系统工程与电子技术, 2025, 47(12): 3890-3900. |
| [6] | 白一帆, 张鹏, 霍晓春, 代巍, 杨文举. MBSE与PLM融合的系统总体协同设计实践应用研究[J]. 系统工程与电子技术, 2025, 47(12): 3924-3934. |
| [7] | 宋则隆, 陈瑾, 周诠, 谭一凡, 赵嘉熙, 郑晓晨. AI赋能基于模型的系统工程研究现状与展望[J]. 系统工程与电子技术, 2025, 47(12): 3966-3980. |
| [8] | 汪澔, 唐剑, 赵云飞, 武仲芝, 郭玮. 民用飞机航空运输体系分布式联合仿真方法及应用研究[J]. 系统工程与电子技术, 2025, 47(12): 3993-4004. |
| [9] | 武磊磊, 赵毅, 董俊花, 李文屏. 基于MBSE的卫星管控流程建模设计[J]. 系统工程与电子技术, 2025, 47(12): 4225-4232. |
| [10] | 陈成, 张祥瑞, 杨中源, 周华伟, 何秦, 韩灿. 基于DoDAF的舰船实战化需求建模与分析方法[J]. 系统工程与电子技术, 2025, 47(10): 3389-3400. |
| [11] | 王乾, 郑党党, 佟瑞庭, 韩冰, 杨小辉. 基于MBSE的民机飞行控制系统架构设计[J]. 系统工程与电子技术, 2024, 46(9): 3050-3059. |
| [12] | 陈志兵, 邬恒, 罗战虎, 王建国. 基于MBSE的对流层飞艇运行概念研究[J]. 系统工程与电子技术, 2024, 46(3): 1004-1012. |
| [13] | 董梦如, 王国新, 鲁金直, 马君达, 阎艳. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46(2): 534-548. |
| [14] | 苗学问, 董骁雄, 钱征文, 胡杨, 李牧东. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46(2): 640-648. |
| [15] | 戚亚群, 金平, 彭祺擘, 张海联, 蔡国飙. 基于模型的推进系统故障识别及建模方法[J]. 系统工程与电子技术, 2024, 46(12): 4062-4073. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||