

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 3890-3900.doi: 10.12305/j.issn.1001-506X.2025.12.15
• “基于模型的系统架构设计与验证技术”专栏 • 上一篇
龚逸辉1(
), 王国新1,*(
), 阎艳1, 吴绶玄1,2, 董梦如1, 袁永吉1
收稿日期:2025-03-03
修回日期:2025-06-17
出版日期:2025-11-28
发布日期:2025-11-28
通讯作者:
王国新
E-mail:3120235543@bit.edu.cn;wangguoxin@bit.edu.cn
作者简介:龚逸辉(1998—),男,博士研究生,主要研究方向为基于模型的系统工程基金资助:
Yihui GONG1(
), Guoxin WANG1,*(
), Yan YAN1, Shouxuan WU1,2, Mengru DONG1, Yongji YUAN1
Received:2025-03-03
Revised:2025-06-17
Online:2025-11-28
Published:2025-11-28
Contact:
Guoxin WANG
E-mail:3120235543@bit.edu.cn;wangguoxin@bit.edu.cn
摘要:
基于模型的系统工程(model-based systems engineering, MBSE)的发展为复杂装备提供一种全新的设计范式。从“以文本为中心”向“以模型为中心”的转变,推动产品交付的数字化进程。因此,模型质量成为MBSE系统模型的开发过程中需要重点衡量的问题。首先,讨论架构模型质量的基本内涵和概念定义;重点分析架构模型质量所涉及的质量特征,提出架构模型质量框架来量化定义什么是“好的模型”。然后,探讨面向复杂装备设计的模型质量保证技术。最后,讨论架构模型质量在设计过程中面临的挑战,展望未来的发展方向,促进无缺陷模型贯穿产品全生命周期,驱动装备数字化设计的高质量发展。
中图分类号:
龚逸辉, 王国新, 阎艳, 吴绶玄, 董梦如, 袁永吉. 基于模型的系统工程中的架构模型质量综述:概念、框架和技术[J]. 系统工程与电子技术, 2025, 47(12): 3890-3900.
Yihui GONG, Guoxin WANG, Yan YAN, Shouxuan WU, Mengru DONG, Yongji YUAN. Review on architecture model quality in model-based systems engineering: concept, framework, technology[J]. Systems Engineering and Electronics, 2025, 47(12): 3890-3900.
表1
文献中关于模型质量的定义"
| 定义方式 | 模型类型 | 作者 | 年份 | 详细描述 |
| 质量框架 | 概念建模 | Lindland等[ | 1994 | 语法质量、语义质量、实用质量 |
| Krogstie[ | 2012 | SEQUAL | ||
| Espinilla 等[ | 2011 | QuEF | ||
| 概念建模/UML | Mohagheghi等[ | 2009 | 6C框架 | |
| 视觉建模语言 | Moody[ | 2009 | 符号物理学 | |
| DSML | Challenger等[ | 2015 | DSML质量框架 | |
| 模型规范 | UML | Sayeb等[ | 2012 | 建模语言和模型的质量模式 |
| Ambler[ | 2005 | UML元素和图表使用规范 | ||
| Balaban等[ | 2018 | 设定不符合建模规范的反模式 | ||
| SysML | Jansen等[ | 2015 | SysML建模规范 |
| 1 | 王林尧, 赵滟, 张仁杰. 数字工程研究综述[J]. 系统工程学报, 2023, 38 (2): 265- 274. |
| WANG L Y, ZHAO Y, ZHANG R J. Review of digital engineering research[J]. Journal of Systems Engineering, 2023, 38 (2): 265- 274. | |
| 2 | BJORKMANE A, SARKANIS S, MAZZUCHI T A. Using model-based systems engineering as a framework for improving test and evaluation activities[J]. Systems Engineering, 2013, 16(3): 346 –362. |
| 3 | 鲁金直, 王国新, 阎艳, 等. 基于多架构建模语言的系统工程建模方法[J]. 系统工程学报, 2023, 38 (2): 146- 160. |
| LU J Z, WANG G X, YAN Y, et al. System engineering modeling methodology based on mutil-architectural modeling language[J]. Journal of Systems Engineering, 2023, 38 (2): 146- 160. | |
| 4 | J Z, et al. Bibliometric analysis of model-based systems engineering: past, current, and future[J]. IEEE Trans. on Engineering Management, 2022, 71, 2475- 2492. |
| 5 | 焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43 (9): 2516- 2525. |
| JIAO H C, LEI Y, ZHANG H Y, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43 (9): 2516- 2525. | |
| 6 |
王雨农, 毕文豪, 张安, 等. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43 (12): 3579- 3585.
doi: 10.12305/j.issn.1001-506X.2021.12.20 |
|
WANG Y N, BI W H, ZHANG A, et al. DoDAF-based civil aircraft MBSE development method[J]. Systems Engineering and Electronics, 2021, 43 (12): 3579- 3585.
doi: 10.12305/j.issn.1001-506X.2021.12.20 |
|
| 7 | 朱景璐, 朱野, 李立, 等. 基于MBSE的卫星能源系统设计与验证[J]. 系统工程与电子技术, 2024, 46 (11): 3807- 3819. |
| ZHU J L, ZHU Y, LI L, et al. Satellite power system design and validation based on MBSE[J]. Systems Engineering and Electronics, 2024, 46 (11): 3807- 3819. | |
| 8 | 李胜忠, 梁川, 赵锋. 基于MBSE的船型与水动力性能研究设计模式探讨[J]. 舰船科学技术, 2021, 43 (15): 1- 5. |
| LI S Z, LIANG C, ZHAO F. Discussion on the design pattern of hullform and hydrodynamic performance based on MBSE[J]. Ship Science and Technology, 2021, 43 (15): 1- 5. | |
| 9 | 鲁金直, 王国新, 郑新华, 等. 基于模型系统工程中国应用调查[J]. 科技导报, 2018, 36 (20): 57- 66. |
| LU J Z, WANG G X, ZHENG X H, et al. Model-based systems engineering application investigation in China[J]. Science & Technology Review, 2018, 36 (20): 57- 66. | |
| 10 | SHIMABUKURO J, MITALO E. Automating model validation for quantifying system maturity & quality assurance[C]//Proc. of the IEEE Aerospace Conference, 2024. |
| 11 | Department of Defense. Digital engineering strategy[R]. Washington D. C.: Department of Defense, 2018. |
| 12 | 刘婷, 张建超. 数字主线应用于航空发动机的初步探讨[J]. 航空动力, 2021 (2): 30- 34. |
| LIU T, ZHANG J C. Preliminary discussion on application of digital thread to aero engine[J]. Aerospace Power, 2021 (2): 30- 34. | |
| 13 |
宋羽, 邹汝平, 王军. 基于模型的系统工程在导弹系统研制中的实践[J]. 兵工学报, 2022, 43 (S1): 97- 106.
doi: 10.12382/bgxb.2022.A014 |
|
SONG Y, ZOU R P, WANG J. On the practice of model-based system engineering in missile development[J]. Acta Armamentarii, 2022, 43 (S1): 97- 106.
doi: 10.12382/bgxb.2022.A014 |
|
| 14 | 徐博, 任占勇, 司勇, 等. MBSE研制模式下的综合保障专业里程碑节点审查方法[J]. 航空标准化与质量, 2021 (2): 13- 18. |
| XU B, REN Z Y, SI Y, et al. Milestone review method of logistics support under MBSE development mode[J]. Aeronautic Standardization & Quality, 2021 (2): 13- 18. | |
| 15 |
GIRALDO F D. , ESPANA S, PASTOR O, et al. Considerations about quality in model-driven engineering: current state and challenges[J]. Software Quality Journal, 2018, 26, 685- 750.
doi: 10.1007/s11219-016-9350-6 |
| 16 | MACDONALD A, RUSSELL D, ATCHISON B. Model-driven development within a legacy system: an industry experience report[C]//Proc. of the Australian Software Engineering Conference, 2005: 14−22. |
| 17 | CDERMOTT T, DELAURENTIS D, BELING P, et al. MAI4SE and SE4AI: a research roadmap[J]. Insight, 2020, 23 (1): 814. |
| 18 | TIMPERLEY L R, BERTHOUD L, SNIDER C. Assessment of large language models for use in generative design of model based spacecraft system architectures[J]. Journal of Engineering Design, 2024, 36(4): 550−570. |
| 19 | FUCHS J, HELMERICH C, HOLLAND S. Transforming system modeling with declarative methods and generative AI[C]//Proc. of the AIAA Scitech Forum, 2024. |
| 20 | GILB T. A conceptual glossary for systems engineering[C]//Proc. of the INCOSE International Symposium, 2004. |
| 21 | WAYNE W A. Model-based systems engineering[M]. Boca Raton: CRC Press, 1993. |
| 22 | OLIVER D W. Descriptions of systems engineering methodologies and comparison of information representations[C]//Proc. of the INCOSE International Symposium, 1993. |
| 23 | MA J D, WANG G X, LU G Z, et al. Application of multi architecture modelling method in intelligent electric–vehicle design[J]. International Journal of Production Research, 2025, 63(15): 5493–5511. |
| 24 | BOX G E, DRAPER N R. Empirical model-building and response surfaces[M]. Hoboken: Wiley, 1987. |
| 25 | LINDLAND O I, SINDRE G, SOLVBERG A. Understanding quality in conceptual modeling[J]. IEEE Software, 1994, 11(2), 42- 49. |
| 26 | CHRISTIAN F J Z. Assessing and improving the quality of modeling: a series of empirical studies about the UML[D]. Eindhoven: Eindhoven University of Technology, 2007. |
| 27 | KROGSTIE J. Quality of modelling languages[M]. London: Springer, 2012. |
| 28 | KROGSTIE J. Specialisations of SEQUAL[M]. London: Springer, 2012. |
| 29 | REIJERS H, MENDLING J, RECKER J. Business process quality management[M]. Cham: Springer, 2010. |
| 30 |
NELSON H, . GEERT P, MARCELA G, et al. A conceptual modeling quality framework[J]. Software Quality Journal, 2012, 20, 201- 228.
doi: 10.1007/s11219-011-9136-9 |
| 31 | MOHAGHEGHI P, AAGEDAL J. Evaluating quality in model-driven engineering[C]//Proc. of the International Workshop on Modeling in Software Engineering, 2007. |
| 32 | MOHAGHEGHI P, VEGARD D H. Developing a quality framework for model-driven engineering[C]//Proc. of the International Conference on Model Driven Engineering Languages and Systems, 2007. |
| 33 | MOHAGHEGHI P, DEHLEN V, NEPLE T. Definitions and approaches to model quality in model-based software development–a review of literature[J]. Information and Software Technology, 2009, 51 (12): 1646- 1669. |
| 34 | ARENDT T, TAENTZER G. A tool environment for quality assurance based on the eclipse modeling framework[J]. Automated Software Engineering, 2013, 20: 141−184. |
| 35 | ESPINILLA M, DOMINGUEZET M, ESCALONAA M. A method based on ahp to define the quality model of QuEF[C]//Proc. of the 6th International Conference on Intelligent Systems and Knowledge Engineering, 2011. |
| 36 | MOODY D L. Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions[J]. Data & Knowledge Engineering, 2005, 55(3), 243- 276. |
| 37 | MOODY D L. The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering[J]. IEEE Trans. on Software Engineering, 2009, 35(6), 756- 779. |
| 38 | STORRLE H, FISH A. Towards an operationalization of the “physics of notations” for the analysis of visual languages[C]//Proc. of the International Conference on Model Driven Engineering Languages and System, 2013. |
| 39 |
CHALLENGER M, KARDAS G, TEKINERDOGAN B. A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems[J]. Software Quality Journal, 2016, 24, 755- 795.
doi: 10.1007/s11219-015-9291-5 |
| 40 | AMBLER S W. The elements of UML 2.0 style[M]. Cambridge: Cambridge University Press, 2005. |
| 41 | BASTARRICA M, RIVAS S, ROSSEL P. Designing and implementing a product family of model consistency checkers[C]//Proc. of the 10th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, 2007. |
| 42 | HINDAWI M, LIONEL M, REGIS A, et al. Description and implementation of a UML style guide[C]//Proc. of the International Conference on Model Driven Engineering Languages and Systems, 2009. |
| 43 | SAYEB K, DOMINIQUE R, NADINE M, et al. Quality of modeling languages and models: towards a catalogue of collaborative patterns[C]//Proc. of the 30th INFORSID Congress, 2012. |
| 44 | BALABAN M, AZZAM M, ARNON S, et al. A pattern-based approach for improving model quality[J]. Software & Systems Modeling, 2015, 14(4), 1527- 1555. |
| 45 | JANSEN N, PFEIFFERET J, BERNHARD R, et al. The language of SysML v2 under the magnifying glass[J]. Journal of Object Technology, 2022, 21(3): 1−15. |
| 46 | KENG S, GENERO M, FERNAN A M, et al. A systematic literature review on the quality of UML models[J]. Journal of Database Management, 2011, 22( 3 ): 46−66. |
| 47 | NELSON H. , et al. Quality in conceptual modeling: five examples of the state of the art[J]. Data & Knowledge Engineering, 2005, 55(3, 237- 242. |
| 48 |
NELSON H, . MONARCHI J. Ensuring the quality of conceptual representations[J]. Software Quality Journal, 2007, 15, 213- 233.
doi: 10.1007/s11219-006-9011-2 |
| 49 | PELEG M, DORI D. The model multiplicity problem: experimenting with real-time specification methods[J]. IEEE Trans. on Software Engineering, 2002, 26(8), 742- 759. |
| 50 | 崔京京, 孙鹏飞, 张韬, 等. 基于模型的DoDAF 2.0体系结构域间耦合映射分析[C]// 第3届体系工程学术会议, 2021. |
| CUI J J, SUN P F, ZHANG T, et al. Model based coupling and mapping analysis of DoDAF 2.0 architecture domains[C]//Proc. of the 3rd Conference on System of Systems Engineering, 2021. | |
| 51 | HAESEN R, SNOECK M. Implementing consistency management techniques for conceptual modeling[C]//Proc. of the International Conference on Unified Modeling Language, 2005. |
| 52 | ZHANG Y Z, GEORG J, YU W, et al. A system modeling process based on SysML to support data consistency across system requirement, function, and solution model layers[J]. Journal of Engineering Design, 2023, 34(9), 674- 690. |
| 53 | SULTAN B, APVRILLE L. AI-driven consistency of sysml diagrams[C]//Proc. of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 2024. |
| 54 | REINHARTZ B, DORI D. OPM vs. UML−experimenting with comprehension and construction of web application models[J]. Empirical Software Engineering, 2005, 10: 57−80. |
| 55 | STARON M, KUZNIARZ L, WOHLIN C. Empirical assessment of using stereotypes to improve comprehension of UML models: a set of experiments[J]. Journal of Systems and Software, 2006, 79(5), 727- 742. |
| 56 | BERENBACH B. The evaluation of large, complex UML analysis and design models[C]// Proc. of the 26th International Conference on Software Engineering, 2004. |
| 57 | EICHELBERGER H. Aesthetics of class diagrams[C]//Proc. of the International Workshop on Visualizing Software for Understanding and Analysis, 2002. |
| 58 | EICHELBERGER H. Nice class diagrams admit good design?[C]//Proc. of the ACM Symposium on Software Visualization, 2003. |
| 59 | MCGILL M J. UML class diagram syntax: an empirical study of comprehension[C]//Proc. of the Conferences in Research and Practice in Information Technology, 2001. |
| 60 | PURCHASE H, ALLDER J, CARRINGTON D. Graph layout aesthetics in UML diagrams: user preferences[J]. Journal of Graph Algorithms and Applications, 2002, 6(3), 255- 279. |
| 61 | 王力冰. 多域复杂产品设计平台M-Design中模型验证和自动布局功能的设计与实现[D]. 杭州: 浙江大学, 2018. |
| WANG L B. The design and implementation of model validation and automatic layout—based on M-Desigen: a platform for modeling of multi-domain system engineering[D]. Hagnzhou: Zhejiang University, 2018. | |
| 62 | HONGO A, NITTA N. Towards a dynamic visualization of complex reverse-engineered object collaboration[C]//Proc. of the 28th Asia-Pacific Software Engineering Conference, 2021. |
| 63 | MASMALI O, BADREDDIN O. Comprehensive model-driven complexity metrics for software systems[C]//Proc. of the IEEE 20th International Conference on Software Quality, Reliability and Security Companion, 2020. |
| 64 | EDWARDS M, HOWELL S. A methodology for system requirements specification and traceability for large real-time complex systems[R]. Dahlgren: Naval Surface Warfare Center, 1991. |
| 65 | HAMILTON V L, BEEBY M L. Issues of traceability in integrating tools[C]//Proc. of the Colloquium on Tools and Techniques for Maintaining Traceability During Design, 1991. |
| 66 | GREENSPAN S J, MCGOWAN C L. Structuring software development for reliability[J]. Microelectronics Reliability, 1978, 17(1): 75−83. |
| 67 | Department of Defense. Military standard 2167A-defensesystem software development[R]. Washington D. C.: Department of Defense, 1988. |
| 68 | PINHEIRO F. An object-oriented tool for tracing requirements[C]// Proc. of the Second International Conference on Requirements Engineering, 1996. |
| 69 | RAMESH B C, STUBBS T P, EDWARDS M. Requirements traceability theory and practice[J]. Annals of Software Engineering, 1997, 3: 397–415. |
| 70 | DORFMAN M. Thayer, standards, guidelines, and examples on system and software requirements engineering[M]. Piscataway: IEEE Press, 1990. |
| 71 | THACKER B H, DOEBLING S W, HEMEZ F M, et al. Concepts of model verification and validation[EB/OL]. [2025-01-01]. https://inis.iaea.org/records/egfyy-d4t03. |
| 72 | DOAN K H, GOGOLLA M. Logical reasoning with object diagrams in a UML and OCL tool[C]//Proc. of the 10th Diagrammatic Representation and Inference International Conference, 2018. |
| 73 |
PEREZ B, PORRES I. Reasoning about UML/OCL class diagrams using constraint logic programming and formula[J]. Information Systems, 2019, 81, 152- 177.
doi: 10.1016/j.is.2018.08.005 |
| 74 | FELDMANN S, HERZIG S J I, KERNSCHMIDT K, et al. A comparison of inconsistency management approaches using a mechatronic manufacturing system design case study[C]//Proc. of the IEEE International Conference on Automation Science and Engineering, 2015. |
| 75 | CLARKE E M. Model checking[C]//Proc. of the International Conference on Foundations of Software Technology and Theoretical Computer Science, 1997. |
| 76 | DING J, RENIERS M, LU J, et al. Integration of modeling and verification for system model based on KARMA language[C]//Proc. of the 18th ACM SIGPLAN International Workshop on Domain-Specific Modeling, 2021. |
| 77 | ESTIVILL-CASTRO V, HEXEL R, MCCOLL M. High-level executable models of reactive real-time systems with logic-labelled finite-state machines and FPGAs[C]//Proc. of the International Conference on ReConFigurable Computing and FPGAs, 2018. |
| 78 | HEHENBERGER P, EGYED A, ZEMAN K. Consistency checking of mechatronic design models[C]//Proc. of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2010. |
| 79 | GIESE M, HELDAL R. From informal to formal specifications in UML[C]//Proc. of the International Conference on the Unified Modeling Language, 2004. |
| 80 | STARON M, KUZNIARZ L, WALLIN L. Case study on a process of industrial MDA realization: determinants of effectiveness[J]. Nordic Journal of Computing, 2004, 11(3, 254- 278. |
| 81 | MCUMBER W, CHENG B H. A general framework for formalizing UML with formal languages[C]//Proc. of the 23rd International Conference on Software Engineering, 2001. |
| 82 | UNHELKAR B. Verification and validation for quality of UML 2.0 models[M]. Hoboken: Wiley, 2005. |
| 83 | BANSIYA J, DAVIS C. A hierarchical model for object-oriented design quality assessment[J]. IEEE Trans. on Software Engineering, 2002, 28(1, 4- 17. |
| 84 | GENERO M. Defining and validating metrics for conceptual models[D]. Cuenca: University of Castilla-La Mancha, 2002. |
| 85 | HENDERSON-SELLERS B. Object-oriented metrics, measures of complexity[M]. Upper Saddle River: Prentice Hall, 1996. |
| 86 | CHIDAMBER S R. KEMERER C F. A metrics suite for object oriented design[J]. IEEE Trans. on Software Engineering, 1994, 20(6), 476- 493. |
| 87 | CHIMIAK O J. Measuring UML models using metrics defined in OCL within the SQUAM framework[C]//Proc. of the International Conference on Model Driven Engineering Languages and Systems, 2011. |
| 88 | DOAN K H, GOGOLLA M. Assessing uml model quality by utilizing metrics[C]//Proc. of the 11th International Conference on the Quality of Information and Communications Technology, 2018. |
| 89 | CHEN J Q. A semantics modeling approach supporting property verification based on satisfiability modulo theories[C]// Proc.of the IEEE International Systems Conference, 2022. |
| 90 |
CHEN J Q. Model-based system engineering supporting production scheduling based on satisfiability modulo theory[J]. Journal of Industrial Information Integration, 2022, 27, 100329.
doi: 10.1016/j.jii.2022.100329 |
| 91 |
WU S X, WANG G Q, LU J Z, et al. Design ontology for cognitive thread supporting traceability management in model-based systems engineering[J]. Journal of Industrial Information Integration, 2024, 40, 100619.
doi: 10.1016/j.jii.2024.100619 |
| 92 | 张浩轩, 梁赞, 王国新, 等. 面向MBSE的起落架系统模型集成技术[J]. 图学学报, 2025, 46(3): 686–696 . |
| ZHANG H X, LIANG Z, WANG G X, et al. Model integration technology for landing gear systems based on MBSE[J]. Journal of Graphics, 2025, 46(3): 686–696 . | |
| 93 | 兰小平, 姚志强, 吴绶玄, 等. 面向MBSE的复杂系统研发模型追溯管理方法[J]. 系统工程学报, 2023, 38 (3): 289- 303. |
| LAN X P, YAO Z Q, WU S X, et al. Traceability management approach for complex system development based on MBSE[J]. Journal of Systems Engineering, 2023, 38 (3): 289- 303. |
| [1] | 孟庆春, 杜非, 王彪, 张芹, 韩汶, 徐畅. 基于MBSE的危化品车辆监控预警系统设计[J]. 系统工程与电子技术, 2025, 47(7): 2224-2236. |
| [2] | 李特, 郭强, 战鹏. 基于MBSE的异构探测器系统架构设计方法[J]. 系统工程与电子技术, 2025, 47(6): 1930-1940. |
| [3] | 崔馨方, 陈祥文. MBSE在载人航天在轨物资补给任务中的应用[J]. 系统工程与电子技术, 2025, 47(5): 1551-1560. |
| [4] | 鲁金直, 王国新, 唐锡晋, 唐俊杰, 温跃杰, 唐剑, 张旸旸, 兰小平, 刘奇, 李俊霖, 马君达, 吴绶玄, 胡晓度. 面向空间智能的基于模型的系统工程方法[J]. 系统工程与电子技术, 2025, 47(12): 3877-3889. |
| [5] | 陈成, 张祥瑞, 杨中源, 周华伟, 何秦, 韩灿. 基于DoDAF的舰船实战化需求建模与分析方法[J]. 系统工程与电子技术, 2025, 47(10): 3389-3400. |
| [6] | 王乾, 郑党党, 佟瑞庭, 韩冰, 杨小辉. 基于MBSE的民机飞行控制系统架构设计[J]. 系统工程与电子技术, 2024, 46(9): 3050-3059. |
| [7] | 陈志兵, 邬恒, 罗战虎, 王建国. 基于MBSE的对流层飞艇运行概念研究[J]. 系统工程与电子技术, 2024, 46(3): 1004-1012. |
| [8] | 董梦如, 王国新, 鲁金直, 马君达, 阎艳. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46(2): 534-548. |
| [9] | 苗学问, 董骁雄, 钱征文, 胡杨, 李牧东. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46(2): 640-648. |
| [10] | 戚亚群, 金平, 彭祺擘, 张海联, 蔡国飙. 基于模型的推进系统故障识别及建模方法[J]. 系统工程与电子技术, 2024, 46(12): 4062-4073. |
| [11] | 朱景璐, 朱野, 李立, 郑轲. 基于MBSE的卫星能源系统设计与验证[J]. 系统工程与电子技术, 2024, 46(11): 3807-3819. |
| [12] | 罗睿, 黄今辉, 王双双, 孔德照. 复杂软件系统双向耦合论证设计方法[J]. 系统工程与电子技术, 2024, 46(10): 3451-3461. |
| [13] | 任浩亮, 张建超, 程会川. 基于SysML的武器装备体系能力需求建模分析方法[J]. 系统工程与电子技术, 2023, 45(9): 2843-2851. |
| [14] | 黄冉, 彭祺擘, 武新峰, 倪庆. 基于DoDAF的载人登月体系结构建模[J]. 系统工程与电子技术, 2023, 45(7): 2131-2137. |
| [15] | 高金艳, 汪路元, 潘忠石, 王虎妹. 火星维护与管理装置的MBSE架构建模[J]. 系统工程与电子技术, 2023, 45(5): 1441-1450. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||