系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4034-4039.doi: 10.12305/j.issn.1001-506X.2025.12.04

• 电子技术 • 上一篇    

基于GA-BP的浮标折线拦截阵布阵规划

吴芳, 高青伟, 吴铭, 安舒   

  1. 海军航空大学,山东 烟台 264001
  • 收稿日期:2024-10-15 修回日期:2025-02-13 出版日期:2025-04-14 发布日期:2025-04-14
  • 通讯作者: 吴芳
  • 作者简介:高青伟(1978—),男,副教授,博士,主要研究方向为控制与制导
    吴 铭(1976—),男,副教授,硕士,主要研究方向为航空兵战术
    安 舒(1989—),女,讲师,硕士,主要研究方向为航空声探测
  • 基金资助:
    国家自然科学基金(52101383)资助课题

Deployment planning buoy polyline interception array based on GA-BP

Fang WU, Qingwei GAO, Ming WU, Shu AN   

  1. Naval Aviation University,Yantai 264001,China
  • Received:2024-10-15 Revised:2025-02-13 Online:2025-04-14 Published:2025-04-14
  • Contact: Fang WU

摘要:

传统的声纳浮标折线拦截阵存在搜索概率低、搜索效能低的问题,基于此,使用遗传算法(genetic algorithm,GA)优化的反向传播(back propagation,BP)神经网络对传统的浮标折线拦截阵进行优化。针对BP神经网络的固有问题进行改进:一是用动态调整的学习率来解决固定学习率的问题,并对其损失函数进行改进;二是使用GA优化BP神经网络,解决BP神经网络初始权重和阈值随机的问题。将所提方法与传统GA优化浮标折线阵及传统浮标折线阵方法进行对比。仿真结果表明,所提方法不但提高了搜索概率,同时规划的浮标折线拦截布阵时间大大缩减,即基于GA-BP的浮标折线拦截阵布阵规划方法可有效提高搜潜效能。

关键词: 浮标布阵, 遗传算法, 神经网络, 搜潜概率

Abstract:

Traditional sonobuoy polyline interception arrays suffer from low search probability and low search efficiency. Based on this, a back propagation (BP) neural network optimized by genetic algorithm (GA) is employed to enhance the performance of conventional buoy polyline interception arrays. Improving the inherent problems of BP neural network, firstly, using dynamically adjusted learning rate to solve the problem of fixed learning rate, and improving its loss function. The second is to use GA to optimize BP neural network and solve the problem of initial weight and random threshold in BP neural network. The proposed method is compared with the traditional GA optimized buoy polyline array and the traditional buoy polyline array method. The simulation results show that the proposed method not only improves the search probability, but also greatly reduces the planned buoy polyline interception array deployment time. Therefore, the GA-BP based buoy polyline interception array deployment planning method can effectively improve the submarine search efficiency.

Key words: buoy deployment, genetic algorithm, neural network, submarine search probability

中图分类号: