系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (4): 1355-1363.doi: 10.12305/j.issn.1001-506X.2025.04.32

• 通信与网络 • 上一篇    下一篇

基于隐式对手建模的策略重构抗智能干扰方法

马鹏, 蒋睿, 王斌, 徐盟飞, 侯长波   

  1. 哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2024-03-01 出版日期:2025-04-25 发布日期:2025-05-28
  • 通讯作者: 侯长波
  • 作者简介:马鹏 (2000—), 男, 硕士研究生, 主要研究方向为通信抗干扰决策
    蒋睿 (1999—), 男, 硕士研究生, 主要研究方向为无线通信技术
    王斌 (2000—), 男, 硕士研究生, 主要研究方向为智能信息与图像处理
    徐盟飞 (1999—), 男, 硕士研究生, 主要研究方向为信息感知与处理
    侯长波 (1986—), 男, 副教授, 博士研究生导师, 博士, 主要研究方向为通信对抗、多模态智能感知
  • 基金资助:
    国家自然科学基金(U23A20271)

Strategy reconstruction for resilience against intelligence jamming based on implicit opponent modeling

Peng MA, Rui JIANG, Bin WANG, Mengfei XU, Changbo HOU   

  1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2024-03-01 Online:2025-04-25 Published:2025-05-28
  • Contact: Changbo HOU

摘要:

随着人工智能技术的不断进步, 智能干扰严重威胁了无线信号的传输, 传统抗干扰算法应对能力不足。基于上述问题, 以强化学习算法为基础, 引入隐式对手建模技术, 将干扰智能体策略隐式编码于神经网络输入中, 经神经网络决策决定通信频点。针对智能干扰策略的非平稳特性, 监测收益趋势识别干扰策略是否切换, 并提出策略重构技术, 利用多尺度窗口检测经验失效起始点, 摒弃失效经验, 同时重置学习率以加速神经网络的收敛速度。实验结果表明, 在相对收敛阶段, 所提方法的传输成功率相比于深度Q网络抗干扰方法提高25%以上。

关键词: 抗干扰, 智能干扰, 深度强化学习, 趋势检测, 隐式对手建模

Abstract:

With the continuous advancement of artificial intelligence technology, intelligent jamming seri-ously threatens wireless signal transmission, and traditional anti-jamming algorithms are insufficient. Based on the above issue, using reinforcement learning algorithms as foundation, implicit opponent modeling techniques are introduced, encoding the jamming agent's strategy implicitly in the neural network input and determining communication frequencies through neural network decisions. In response to the non-stationary nature of intelligent jamming strategies, profit trends are monitored to identify whether jamming strategies are switching and strategy reconstruction technology is proposed. Multi-scale window detection is utilized to identify the start point of experiential failure and discard failed experiences. Learning rate is simultaneously reset to accelerate the convergence speed of the neural network. Experimental results demonstrate that during the relative convergence phase, the proposed method's transmission success rate is increased by over 25% compared to the deep Q-network anti-jamming method.

Key words: anti-jamming, intelligent jamming, deep reinforcement learning, trend detection, implicit opponent modeling

中图分类号: