系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 807-816.doi: 10.12305/j.issn.1001-506X.2025.03.13
• 传感器与信号处理 • 上一篇
李家宽, 冯博, 刘红亮, 叶春茂, 余继周
收稿日期:
2023-11-21
出版日期:
2025-03-28
发布日期:
2025-04-18
通讯作者:
余继周
作者简介:
李家宽 (1999—), 男, 硕士研究生, 主要研究方向为雷达目标识别Jiakuan LI, Bo FENG, Hongliang LIU, Chunmao YE, Jizhou YU
Received:
2023-11-21
Online:
2025-03-28
Published:
2025-04-18
Contact:
Jizhou YU
摘要:
逆合成孔径雷达(inverse synthetic aperture radar, ISAR)图像是雷达自动目标识别的重要手段,获得高分辨率的ISAR图像需要雷达长时间照射,在实际工程应用中存在较大的限制。相比之下,宽带脉冲多普勒(pulse Doppler, PD)图像通过短脉冲积累成像,能够有效节约雷达资源。本文以不同入射视线角下图像中调制现象差异为出发点,设计一种角度引导注意力的卷积神经网络,旨在实现有限资源下更高的识别性能。首先,通过混合注意力残差模块,使网络聚焦于图像空域的差异,从而有效提升目标精细化特征的表征能力。然后,设计角度引导注意力模块,通过角度编码将入射视线角信息嵌入网络,实现目标特征表示与姿态的关联耦合,进一步提升识别准确率。最后,通过3类飞机的实测宽带PD图像进行分类识别,验证所设计网络的有效性。
中图分类号:
李家宽, 冯博, 刘红亮, 叶春茂, 余继周. 基于角度引导注意力的气动目标宽带PD识别方法[J]. 系统工程与电子技术, 2025, 47(3): 807-816.
Jiakuan LI, Bo FENG, Hongliang LIU, Chunmao YE, Jizhou YU. Angle-guided attention-based wideband PD recognition method for aerodynamic targets[J]. Systems Engineering and Electronics, 2025, 47(3): 807-816.
表1
整体网络结构参数"
网络结构 | 参数设置 | 输出尺寸 |
阶段0 | 16×64@64 | |
阶段1 | 16×64@64 | |
阶段2 | 8×32@128 | |
角度引导注意力模块 | 8×32@128 | |
阶段3 | 4×16@256 | |
阶段4 | 2×8@512 | |
全连接层 | 平均池化, softmax | 1×1 |
表4
不同网络模型的识别性能对比"
网络模型 | 识别准确率/% | 平均识别率/% | 参数量(×106) | 计算量(浮点运算次数×109/s) | ||
安26 | 奖状 | 雅克42 | ||||
ResNet34 | 95.3 | 90.5 | 98.2 | 94.67 | 21.28 | 38.43 |
ResNet34+通道注意力模块 | 92.7 | 94.7 | 97.6 | 95.00 | 21.44 | 38.46 |
ResNet34+空间注意力模块 | 97.3 | 93.9 | 93.7 | 94.96 | 21.28 | 38.44 |
ResNet34+角度引导注意力模块 | 96.8 | 95.1 | 100.0 | 97.30 | 21.31 | 38.59 |
ResNet34+混合注意力残差模块 | 98.9 | 94.6 | 98.8 | 97.43 | 21.44 | 38.46 |
ResNet34+角度引导注意力模块+ 混合注意力残差模块 | 96.6 | 98.1 | 100.0 | 98.23 | 21.46 | 38.61 |
1 | SAIDI M N, DAOUDI K, KHENCHAF A, et al. Automatic target recognition of aircraft models based on ISAR images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2009. |
2 | 尚士泽, 李明, 侯颖妮. 基于对称Gabor小波滤波的舰船目标识别方法[J]. 现代雷达, 2017, 39 (10): 43- 48. |
SHANG S Z , LI M , HOU Y N . Ship target recognition method based on symmetric Gabor wavelet filtering[J]. Modern Radar, 2017, 39 (10): 43- 48. | |
3 | WANG N, MIAO Y Z, TONG C, et al. Space target recognition of ISAR image based on the PCA method[C]//Proc. of the International Conference on Image, Signal Processing, and Pattern Recognition, 2023: 963-970. |
4 | CEXUS J C, TOUMI A, RIAHI M. Target recognition from ISAR image using polar mapping and shape matrix[C]//Proc. of the 5th International Conference on Advanced Technologies for Signal and Image Processing, 2020. |
5 | JIN X F, SU F L. Aircraft recognition using ISAR image based on quadrangle-points affine transform[C]//Proc. of the 15th International Congress on Image and Signal Processing, 2022. |
6 |
LI X Y , HE Y , JING X J . A survey of deep learning-based human activity recognition in radar[J]. Remote Sensing, 2019, 11 (9): 1068.
doi: 10.3390/rs11091068 |
7 |
GURBUZ S Z , AMIN M G . Radar-based human-motion recognition with deep learning: Promising applications for indoor monitoring[J]. IEEE Signal Processing Magazine, 2019, 36 (4): 16- 28.
doi: 10.1109/MSP.2018.2890128 |
8 | YANG Y, GAO X Z, SHEN Q M. Learning embedding adaptation for ISAR image recognition with few samples[C]//Proc. of the 2nd Information Communication Technologies Conference, 2021: 86-89. |
9 | 曾磊. 基于深度卷积神经网络的ISAR图像小样本识别方法研究[D]. 西安: 西安电子科技大学, 2021. |
ZENG L. Research on small sample recognition of ISAR images based on deep convolutional neural networks[D]. Xi'an: Xidian University, 2021. | |
10 |
LU W , ZHANG Y S , YIN C B , et al. A deformation robust ISAR image satellite target recognition method based on PT-CCNN[J]. IEEE Access, 2021, 9, 23432- 23453.
doi: 10.1109/ACCESS.2021.3056671 |
11 |
BAI X R , ZHOU X N , ZHANG F , et al. Robust Pol-ISAR target recognition based on ST-MC-DCNN[J]. IEEE Trans. on Geoscience and Remote Sensing, 2019, 57 (12): 9912- 9927.
doi: 10.1109/TGRS.2019.2930112 |
12 | ZHOU X N, BAI X R. Robust ISAR target recognition based on IC-STNs[C]//Proc. of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, 2019. |
13 |
ZHOU X N , BAI X R , WANG L , et al. Robust ISAR target recognition based on ADRISAR-Net[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (6): 5494- 5505.
doi: 10.1109/TAES.2022.3174826 |
14 | 任永梅, 杨杰, 郭志强, 等. 基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法[J]. 电子与信息学报, 2021, 43 (5): 1424- 1431. |
REN Y M , YANG J , GUO Z Q , et al. Adaptive entropy-weighted decision fusion ship image classification method based on multiscale convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43 (5): 1424- 1431. | |
15 | LIN W H, GAO X Z, SHEN Q M. A novel recognition method of ISAR image fusion based on Botnet and Embracenet[C]//Proc. of the IEEE 6th International Conference on Signal and Image Processing, 2021: 841-845. |
16 |
LI X H , RAN J H , WEN Y B , et al. MVFRnet: a novel high-accuracy network for ISAR air-target recognition via multi-view fusion[J]. Remote Sensing, 2023, 15 (12): 3052.
doi: 10.3390/rs15123052 |
17 | HAN C L, LU Y, YANG D, et al. Multi-source collaborative target classification based on ISAR and infrared image[C]//Proc. of the 6th International Conference on Image, Vision and Computing, 2021: 149-153. |
18 | WANG J, HUO C Y, WANG F, et al. Analysis of space target fusion reconstruction based on optical image and ISAR image[C]//Proc. of the 8th Symposium on Novel Photoelectronic Detection Technology and Applications, 2022: 520-525. |
19 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
20 | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. |
21 | LI X, HU X L, YANG J. Spatial group-wise enhance: improving semantic feature learning in convolutional networks[EB/OL]. [2023-10-21]. https://arxiv.org/abs/1905.09646. |
22 |
张一凡, 张双辉, 刘永祥, 等. 基于注意力机制的堆叠LSTM网络雷达HRRP序列目标识别方法[J]. 系统工程与电子技术, 2021, 43 (10): 2775- 2781.
doi: 10.12305/j.issn.1001-506X.2021.10.09 |
ZHANG Y F , ZHANG S H , LIU Y X , et al. Radar HRRP sequence target recognition method of attention mechanism based stacked LSTM network[J]. Systems Engineering and Electronics, 2021, 43 (10): 2775- 2781.
doi: 10.12305/j.issn.1001-506X.2021.10.09 |
|
23 |
曹鹏宇, 杨承志, 陈泽盛, 等. 基于深度残差收缩注意力网络的雷达信号识别方法[J]. 系统工程与电子技术, 2023, 45 (3): 717- 725.
doi: 10.12305/j.issn.1001-506X.2023.03.12 |
CAO P Y , YANG C Z , CHEN Z S , et al. Radar signal recognition method based on deep residual shrinkage attention network[J]. Systems Engineering and Electronics, 2023, 45 (3): 717- 725.
doi: 10.12305/j.issn.1001-506X.2023.03.12 |
|
24 |
赵庆媛, 赵志强, 叶春茂, 等. 基于自注意力的双波段预警雷达微动融合识别[J]. 系统工程与电子技术, 2023, 45 (3): 708- 716.
doi: 10.12305/j.issn.1001-506X.2023.03.11 |
ZHAO Q Y , ZHAO Z Q , YE C M , et al. Micro-motion fusion recognition of double-band early warning radar based on self-attention mechanism[J]. Systems Engineering and Electronics, 2023, 45 (3): 708- 716.
doi: 10.12305/j.issn.1001-506X.2023.03.11 |
|
25 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
26 | CHEN V C. Radar signatures of rotor blades[C]//Proc. of the Conference on Wavelet Applications, 2001: 63-70. |
27 | CHEN V C , LI F , HO S S , et al. Micro-Doppler effect in radar: phenomenon model and simulation study[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21. |
28 |
BELL M R , GRUBBS R A . JEM modeling and measurement for radar target identification[J]. IEEE Trans. on Aerospace and Electronic Systems, 1993, 29 (1): 73- 87.
doi: 10.1109/7.249114 |
29 | MARTIN J, MULGREW B. Analysis of the theoretical radar return signal form aircraft propeller blades[C]//Proc. of the IEEE International Conference on Radar, 1990: 569-572. |
30 | 郭帅, 陈婷, 王鹏辉, 等. 基于角度引导Transformer融合网络的多站协同目标识别方法[J]. 雷达学报, 2023, 12 (3): 516- 528. |
GUO S , CHEN T , WANG P H , et al. Multi-station cooperative target recognition method based on angle-guided transformer fusion network[J]. Journal of Radars, 2023, 12 (3): 516- 528. | |
31 | SUN Y S , WANG Y H , LIU H W , et al. SAR target recognition with limited training data based on angular rotation generative network[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17 (11): 1928- 1932. |
32 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. [2023-10-21]. https://arxiv.org/abs/1706.03762. |
33 |
KIRANYAZ S , AVCI O , ABDELJABER O , et al. 1D convolutional neural networks and applications: a survey[J]. Mechanical Systems and Signal Processing, 2021, 151, 107398.
doi: 10.1016/j.ymssp.2020.107398 |
[1] | 刘强, 孙浩冉, 胡邓华, 张爽. 基于Vondrak-Cepek组合滤波和注意力机制加权的时间比对融合算法[J]. 系统工程与电子技术, 2025, 47(2): 673-679. |
[2] | 尹建国, 盛文, 蒋伟. 基于深度残差收缩网络的雷达空中目标识别[J]. 系统工程与电子技术, 2024, 46(9): 3012-3018. |
[3] | 陈晓萱, 徐书文, 胡绍海, 马晓乐. 基于卷积与自注意力的红外与可见光图像融合[J]. 系统工程与电子技术, 2024, 46(8): 2641-2649. |
[4] | 王彩云, 张慧雯, 王佳宁, 吴钇达, 常韵. 基于DTCWT-VAE的弹道中段目标RCS识别[J]. 系统工程与电子技术, 2024, 46(7): 2269-2275. |
[5] | 吴嘉俊, 苏春, 张玉茹. 基于双重自注意力机制和长短时记忆网络的剩余寿命预测[J]. 系统工程与电子技术, 2024, 46(6): 1986-1994. |
[6] | 薛丽莎, 葛瑞星, 朱宇轩, 鲍雁飞. 基于SABEGAN的通信干扰信号生成与效能分析[J]. 系统工程与电子技术, 2024, 46(6): 2155-2163. |
[7] | 吴钇达, 王彩云, 王佳宁, 李晓飞. 基于ISVM-DS的红外多传感器融合识别方法[J]. 系统工程与电子技术, 2024, 46(5): 1555-1560. |
[8] | 刘绍华, 杜康, 佘春东, 杨傲. 基于CenterNet的多教师联合知识蒸馏[J]. 系统工程与电子技术, 2024, 46(4): 1174-1184. |
[9] | 方小宇, 黄丽佳. 基于全局位置信息和残差特征融合的SAR船舶检测算法[J]. 系统工程与电子技术, 2024, 46(3): 839-848. |
[10] | 张春杰, 王冠博, 陈奇, 邓志安. 基于纯自注意力机制的毫米波雷达手势识别[J]. 系统工程与电子技术, 2024, 46(3): 859-867. |
[11] | 欧阳彤, 汪玲, 朱岱寅, 李勇. 融合LightGBM的ResNeXt气象目标细粒度识别方法[J]. 系统工程与电子技术, 2024, 46(12): 4034-4043. |
[12] | 王彩云, 常韵, 李晓飞, 王佳宁, 吴钇达, 张慧雯. 基于改进MKELM的红外空间锥体目标识别[J]. 系统工程与电子技术, 2024, 46(10): 3257-3264. |
[13] | 赵晓枫, 牛家辉, 刘春桐, 夏玉婷. 基于三维注意力与混合卷积的高光谱图像分类[J]. 系统工程与电子技术, 2023, 45(9): 2673-2680. |
[14] | 李海军, 孔繁程, 林云. 基于改进YOLOv5s的红外舰船检测算法[J]. 系统工程与电子技术, 2023, 45(8): 2415-2422. |
[15] | 王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||