系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 807-816.doi: 10.12305/j.issn.1001-506X.2025.03.13

• 传感器与信号处理 • 上一篇    

基于角度引导注意力的气动目标宽带PD识别方法

李家宽, 冯博, 刘红亮, 叶春茂, 余继周   

  1. 北京无线电测量研究所, 北京 100854
  • 收稿日期:2023-11-21 出版日期:2025-03-28 发布日期:2025-04-18
  • 通讯作者: 余继周
  • 作者简介:李家宽 (1999—), 男, 硕士研究生, 主要研究方向为雷达目标识别
    冯博 (1988—), 男, 高级工程师, 博士, 主要研究方向为雷达智能化应用、雷达目标识别
    刘红亮 (1989—), 男, 高级工程师, 博士, 主要研究方向为雷达信号处理、数据处理、雷达组网技术
    叶春茂 (1981—), 男, 研究员, 博士, 主要研究方向为雷达系统设计及应用
    余继周 (1977—), 男, 研究员, 博士, 主要研究方向为雷达总体设计、雷达成像和目标识别

Angle-guided attention-based wideband PD recognition method for aerodynamic targets

Jiakuan LI, Bo FENG, Hongliang LIU, Chunmao YE, Jizhou YU   

  1. Beijing Institute of Radio Measurement, Beijing 100854, China
  • Received:2023-11-21 Online:2025-03-28 Published:2025-04-18
  • Contact: Jizhou YU

摘要:

逆合成孔径雷达(inverse synthetic aperture radar, ISAR)图像是雷达自动目标识别的重要手段,获得高分辨率的ISAR图像需要雷达长时间照射,在实际工程应用中存在较大的限制。相比之下,宽带脉冲多普勒(pulse Doppler, PD)图像通过短脉冲积累成像,能够有效节约雷达资源。本文以不同入射视线角下图像中调制现象差异为出发点,设计一种角度引导注意力的卷积神经网络,旨在实现有限资源下更高的识别性能。首先,通过混合注意力残差模块,使网络聚焦于图像空域的差异,从而有效提升目标精细化特征的表征能力。然后,设计角度引导注意力模块,通过角度编码将入射视线角信息嵌入网络,实现目标特征表示与姿态的关联耦合,进一步提升识别准确率。最后,通过3类飞机的实测宽带PD图像进行分类识别,验证所设计网络的有效性。

关键词: 宽带脉冲多普勒图像, 目标识别, 注意力机制, 角度引导

Abstract:

Inverse synthetic aperture radar (ISAR) images are vital tools for radar automatic target recognition. However, acquiring high-resolution ISAR images requires prolonged radar illumination, posing significant limitations in practical engineering applications. In contrast, wideband pulse Doppler (PD) images can effectively save radar resources by accumulating images with short pulses. In this paper, the difference of modulation phenomena in images under different incident view angles is taken as the starting point, aiming to achieve higher recognition performance under limited resources, a convolutional neural network (CNN) with angle-guided attention is proposed. Firstly, through a hybrid attention residual module, the network focuses on the differences in the image space, effectively enhancing the representation capability of fine-grained target features. Subsequently, an angle-guided attention module is designed, embedding incident view angle information into the network through angle encoding, establishing a coupling between target feature representation and pose, further improving recognition accuracy. Finally, the effectiveness of the proposed network is validated through the classification and recognition of measured wideband PD images of three types of aircraft.

Key words: wideband pulse Doppler (PD) image, target recognition, attention mechanism, angle-guided

中图分类号: