系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 797-806.doi: 10.12305/j.issn.1001-506X.2025.03.12
• 传感器与信号处理 • 上一篇
陈世龙1,2, 刘霖1,2,*, 王晓蓓1, 曾翰森1,2, 刘亚波1,2, 刘翔1
收稿日期:
2023-12-29
出版日期:
2025-03-28
发布日期:
2025-04-18
通讯作者:
刘霖
作者简介:
陈世龙 (2000—), 男, 硕士研究生, 主要研究方向为抗有源欺骗干扰下的参数捷变波形设计及成像处理算法基金资助:
Shilong CHEN1,2, Lin LIU1,2,*, Xiaobei WANG1, Hansen ZENG1,2, Yabo LIU1,2, Xiang LIU1
Received:
2023-12-29
Online:
2025-03-28
Published:
2025-04-18
Contact:
Lin LIU
摘要:
合成孔径雷达(synthetic aperture radar, SAR)脉间载频捷变技术通过随机改变每个脉冲信号的载频, 主动增加了雷达波形的复杂度和不确定性, 能够有效对抗有源欺骗干扰, 但脉间载频捷变会导致多普勒调频率捷变、方位向无法压缩等问题。对此, 提出一种快速补偿频域成像处理方案。考虑到脉间捷变频信号脉间相位历程变化、脉内线性调频的特性, 在距离向脉冲压缩后能避免相位随距离空变, 并通过对距离向主瓣精准补偿和旁瓣近似补偿, 实现在快速成像的同时, 抑制距离向旁瓣, 提升弱目标显示能力, 其计算量与传统固定波形SAR成像计算量相当。仿真数据处理得到了点目标、面目标在有源欺骗干扰下的成像结果, 验证了该方案的有效性及抗干扰性能。此外, 该处理方案下点目标的峰值旁瓣比和积分旁瓣比对比传统固定波形处理方案能分别有效提升12 dB和10 dB。
中图分类号:
陈世龙, 刘霖, 王晓蓓, 曾翰森, 刘亚波, 刘翔. 脉间捷变频SAR快速补偿频域成像处理算法[J]. 系统工程与电子技术, 2025, 47(3): 797-806.
Shilong CHEN, Lin LIU, Xiaobei WANG, Hansen ZENG, Yabo LIU, Xiang LIU. Fast compensation frequency-domain imaging processing algorithm for inter-pules frequency agility SAR[J]. Systems Engineering and Electronics, 2025, 47(3): 797-806.
1 | 黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9 (1): 86- 106. |
HUANG Y , ZHAO B , TAO M L , et al. A review of anti-jamming technology of synthetic aperture radar[J]. Radar Journal, 2020, 9 (1): 86- 106. | |
2 | 戴少奇. 合成孔径雷达有源欺骗式干扰关键技术研究[D]. 长沙: 国防科技大学, 2021. |
DAI S Q. Research on key technology of active deceptive jamming for synthetic aperture radar[D]. Changsha: National University of Defence Technology, 2021. | |
3 | XU L, YU Y, WEI P T. Research on active jamming recognition in complex electromagnetic environment[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
4 | LIN J J, FAN X L. Radar active jamming recognition based on recurrence plot and convolutional neural network[C]//Proc. of the IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2021: 1511-1515. |
5 | HAO W B, FENG X Y, JIANG X Y. Radar active jamming signal identification method based on time-frequency image features[C]// Proc. of the 2nd International Conference on Image Processing and Media Computing, 2023: 64-70. |
6 | WANG K T, DONG Z Y, WAN T, et al. Research on radar active deception jamming identification method based on RESNET and bispectrum features[C]//Proc. of the International Conference on Computer Engineering and Application, 2021: 491-495. |
7 | 张顺生, 陈爽, 陈晓莹, 等. 面向小样本的多模态雷达有源欺骗干扰识别方法[J]. 雷达学报, 2023, 12 (4): 882- 891. |
ZHANG S S , CHEN S , CHEN X Y , et al. Small-sample oriented active spoofing interference identification method for multimodal radar[J]. Radar Journal, 2023, 12 (4): 882- 891. | |
8 | 赵荣琦, 张陆唯, 王湛. 基于时频域分析的雷达有源干扰识别方法及实现[J]. 舰船电子对抗, 2023, 46 (5): 30- 36. |
ZHAO R Q , ZHANG L W , WANG Z . Identification method and implementation of radar active interference based on time-frequency domain analysis[J]. Ship Electronic Countermeasures, 2023, 46 (5): 30- 36. | |
9 | 王宇. 抗有源欺骗干扰波形设计与信号相参处理方法[D]. 西安: 西安电子科技大学, 2022. |
WANG Y. Anti-active spoofing interference waveform design and signal phase reference processing method[D]. Xi'an: Xidian University, 2022. | |
10 | 田思雨. 雷达抗干扰波形设计方法研究[D]. 西安: 西安电子科技大学, 2022. |
TIAN S Y. Research on radar anti-jamming waveform design method[D]. Xi'an: Xidian University, 2022. | |
11 |
ZHENG Z X , LI W , ZOU K . Airborne radar anti-jamming waveform design based on deep reinforcement learning[J]. Sensors, 2022, 22 (22): 8689.
doi: 10.3390/s22228689 |
12 |
LI K , JIU B , WANG P H , et al. Radar active antagonism through deep reinforcement learning: a way to address the challenge of mainlobe jamming[J]. Signal Processing, 2021, 186, 108130.
doi: 10.1016/j.sigpro.2021.108130 |
13 |
蒋思源, 吕幼新. 基于调频率捷变的抗移频干扰SAR成像方法[J]. 雷达科学与技术, 2015, 13 (6): 622- 626.
doi: 10.3969/j.issn.1672-2337.2015.06.011 |
JIANG S Y , LYU Y X . Anti-shift interference SAR imaging method based on tuning frequency shortcut[J]. Radar Science and Technology, 2015, 13 (6): 622- 626.
doi: 10.3969/j.issn.1672-2337.2015.06.011 |
|
14 | CHANG W S , TAO H H , HU X C , et al. Research on UAV noisy SAR regime with randomly varying PRF and pulse width[J]. Modern Radar, 2020, 42 (6): 7-14, 29. |
15 | YANG B Y, LI K, JIU B, et al. An intelligent jamming strategy design method against frequency agility radar[C]//Proc. of the IEEE International Radar Conference, 2023. |
16 |
SHAN S W , ZHENG L , RONG X , et al. Reinforcement learning for compressed-sensing based frequency agile radar in the presence of active interference[J]. Remote Sensing, 2022, 14 (4): 968- 968.
doi: 10.3390/rs14040968 |
17 |
AXEISSON J . Analysis of random step frequency radar and comparison with experiments[J]. IEEE Trans. on Geoscience and Remote Sensing, 2007, 45 (4): 890- 904.
doi: 10.1109/TGRS.2006.888865 |
18 | 刘天鹏, 刘振, 魏玺章. 基于压缩感知的脉间捷变频SAR成像研究[J]. 电子学报, 2012, 40 (6): 1073- 1078. |
LIU T P , LIU Z , WEI X Z . Research on intervein jitter frequency SAR imaging based on compressed sensing[J]. Journal of Electronics, 2012, 40 (6): 1073- 1078. | |
19 | 冯韵岚. 基于压缩感知技术的ISAR成像方法研究[D]. 西安: 西安电子科技大学, 2022. |
FENG Y L. Research on ISAR imaging method based on compressed perception technology[D]. Xi'an: Xidian University, 2022. | |
20 | ZHENG Y , ZHU D Y , NIU S L , et al. Studies on high-resolution airborne synthetic aperture radar image formation with pseudo-random agility of interpulse waveform parameters[J]. Remote Sensing, 2024, 16 (1): 164. |
21 |
SU M Y S , FANG C J . Analysis of synthetic aperture radar imaging and signal processing[J]. Advanced Materials Research, 2012, 433-440, 2004- 2010.
doi: 10.4028/www.scientific.net/AMR.433-440.2004 |
22 | ZHOU K , LI D , HE F H , et al. A sparse imaging method for frequency agile SAR[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5223616. |
23 |
HUANG T Y , LIU Y M , XU X Y , et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Trans. on Signal Processing, 2018, 66 (23): 6228- 6240.
doi: 10.1109/TSP.2018.2876301 |
24 |
XI Y H , WEI A O , SONG Q , et al. FUSAR-ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition[J]. SCIENCE CHINA Information Sciences, 2020, 63 (4): 40- 58.
doi: 10.1007/s11432-019-2772-5 |
25 |
XIA R F , CHEN J , HUANG Z X , et al. TransSar: a visual transformer based on contextual joint representation learning for sar ship detection[J]. Remote Sensing, 2022, 14 (6): 1488- 1488.
doi: 10.3390/rs14061488 |
26 | YANG W H, CHEN Y G. The waveform agile FJB signal for SAR and GMTI[C]//Proc. of the International Conference on Wireless Communication and Sensor Network, 2014: 110-113. |
27 | LI D, BABAKHANI A. A 4. 3 to 5. 7 GHz frequency-agile receiver for rapidly-changing channels[C]//Proc. of the IEEE 60th International Midwest Symposium on Circuits and Systems, 2017: 1458-1460. |
28 |
ISKER H , OZDER C . Adaptation of stepped frequency continuous waveform to range-Doppler algorithm for SAR signal processing[J]. Digital Signal Processing, 2020, 106, 102826.
doi: 10.1016/j.dsp.2020.102826 |
29 |
LIU Z X , QUAN Y H , DU S Y , et al. A novel ECCM scheme against interrupted-sampling repeater jamming using intra-pulse dual-parameter agile waveform[J]. Digital Signal Processing, 2022, 129, 103652.
doi: 10.1016/j.dsp.2022.103652 |
30 |
YING X C , YING L , CHENG W . DRFM-based jamming signal recognition method guided by target detection[J]. Procedia Computer Science, 2023, 221, 1013- 1020.
doi: 10.1016/j.procs.2023.08.082 |
31 |
ZENG Z , TIAN H , ZHAO T , et al. A two-dimensional mixed baseline method for countering deceptive jamming based on multi-channel SAR[J]. Procedia Computer Science, 2021, 187, 383- 389.
doi: 10.1016/j.procs.2021.04.076 |
32 | CHENG G J, FU X J, MA S S, et al. Anti-jamming technology of dense co-frequency synchronous range false targets[C]//Proc. of the CIE International Conference on Radar, 2016. |
33 | LIU Y, LI T, GU Z J. Research on SAR active deception jamming scenario generation technique[C]//Proc. of the 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2015: 152-156. |
[1] | 贾钰嘉, 张思乾, 唐涛, 匡纲要. 强化散射特征的机载SAR实传图像盲超分辨重建[J]. 系统工程与电子技术, 2025, 47(3): 753-767. |
[2] | 杨志伟, 杨安东, 梁庚辰, 李相海, 李晓蕊, 刘杰. 多子带融合解动目标径向速度模糊方法[J]. 系统工程与电子技术, 2025, 47(3): 788-796. |
[3] | 贾蕾蕾, 刘利民, 董健. 基于图像结构信息的可见光和SAR图像快速配准[J]. 系统工程与电子技术, 2025, 47(2): 428-441. |
[4] | 蒋李兵, 杨庆伟, 郑舒予, 王壮. 基于拍卖理论的组网雷达多轨道目标ISAR成像资源分配算法[J]. 系统工程与电子技术, 2025, 47(1): 81-93. |
[5] | 孟洋, 周国如, 李洁, 张冰尘. 基于结构化字典学习的判别稀疏微波成像方法[J]. 系统工程与电子技术, 2025, 47(1): 94-100. |
[6] | 陈洪猛, 李军, 刘京, 黄伟, 张英杰, 陈燕, 鲁耀兵. 基于Radon时频分析的海面舰船目标SAR-ISAR混合成像方法[J]. 系统工程与电子技术, 2025, 47(1): 109-116. |
[7] | 于雷, 刘一品, 位寅生. 基于信干噪比最大化的盲提取抗主瓣干扰方法[J]. 系统工程与电子技术, 2024, 46(9): 2968-2979. |
[8] | 颜上取, 付耀文, 张文鹏, 杨威, 余若峰, 张法桐. 视频合成孔径雷达技术发展现状综述[J]. 系统工程与电子技术, 2024, 46(8): 2650-2666. |
[9] | 王进, 冷祥光, 孙忠镇, 马晓杰, 杨阳, 计科峰. 复杂运动舰船目标SAR成像空/时变散焦特性研究[J]. 系统工程与电子技术, 2024, 46(7): 2237-2255. |
[10] | 邢世其, 纪朋徽, 代大海, 冯德军. 方位向调制干扰对高分宽幅多通道SAR的影响[J]. 系统工程与电子技术, 2024, 46(6): 1946-1956. |
[11] | 曾顶, 殷君君, 杨健. 基于融合距离的极化SAR图像非局部均值滤波[J]. 系统工程与电子技术, 2024, 46(5): 1493-1502. |
[12] | 邵子康, 张晓玲, 张天文, 曾天娇. 基于锚框自适应和多尺度增强的SAR舰船检测[J]. 系统工程与电子技术, 2024, 46(4): 1204-1211. |
[13] | 张天文, 张晓玲, 邵子康, 曾天娇. 基于掩模注意型交互的SAR舰船实例分割[J]. 系统工程与电子技术, 2024, 46(3): 831-838. |
[14] | 方小宇, 黄丽佳. 基于全局位置信息和残差特征融合的SAR船舶检测算法[J]. 系统工程与电子技术, 2024, 46(3): 839-848. |
[15] | 张亚丽, 冯伟, 全英汇, 邢孟道. 基于多源遥感图像多级协同融合的舰船识别算法[J]. 系统工程与电子技术, 2024, 46(2): 407-418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||