| 1 |
赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012.
|
|
ZHAO H C. Fundamentals and methodology of radio fuze [M]. Beijing: National Defense Industry Press, 2012.
|
| 2 |
崔占忠, 宋世和, 徐立新. 近炸引信原理[M]. 第3版. 北京: 北京理工大学出版社, 2009.
|
|
CUI Z Z, SONG S H, XU L X. Principle of proximity fuze[M]. 3 rd ed. Beijing: Beijing Institute of Technology Press, 2009.
|
| 3 |
李剑锋, 代健, 郝新红, 等. 无线电引信认知抗干扰模型及关键技术综述[J]. 探测与控制学报, 2022, 44 (5): 1- 9.
|
|
LI J F, DAI J, HAO X H, et al. Review of cognitive anti-jamming model and key technology of radio fuze[J]. Journal of Detection & Control, 2022, 44 (5): 1- 9.
|
| 4 |
郝新红, 杜涵宇, 陈齐乐. 调频引信粗糙面目标与干扰信号识别[J]. 北京航空航天大学学报, 2019, 45 (10): 1946- 1955.
|
|
HAO X H, DU H Y, CHEN Q L. Rough surface target and jamming signal recognition of FM fuze[J]. Journal of Beijing University ofAeronautics and Astronautics, 2019, 45 (10): 1946- 1955.
|
| 5 |
DAI J, HAO X H, LI Z, et al. Adaptive target and jamming recognition for the pulse doppler radar fuze based on a time-frequency joint feature and an online-up-dated naive bayesian classifier with minimal risk[J]. Defence Technology, 2021, 19 (3): 128- 140.
|
| 6 |
韩磊, 周帅. 基于FLAKNN的雷达一维距离像目标识别[J]. 北京理工大学学报, 2021, 41 (6): 611- 618.
doi: 10.15918/j.tbit1001-0645.2020.181
|
|
HAN L, ZHOU S. Radar range profile target recognition based on FLAKNN[J]. Transcations of Beijing Institute of Technology, 2021, 41 (6): 611- 618.
doi: 10.15918/j.tbit1001-0645.2020.181
|
| 7 |
严保康, 周凤星, 徐波. 基于GST的变速机械故障信号稀疏特征提取方法[J]. 北京理工大学学报, 2019, 39 (6): 603- 608.
doi: 10.15918/j.tbit1001-0645.2019.06.009
|
|
YAN B K, ZHOU F X, XU B. Sparse feature extraction for variable speedmachinery based on sparse decomposition combined GST[J]. Transcations of Beijing Institute of Technology, 2019, 39 (6): 603- 608.
doi: 10.15918/j.tbit1001-0645.2019.06.009
|
| 8 |
马俊涛, 高梅国, 郭宝峰, 等. 基于二维稀疏特性的空间目标高分辨ISAR成像方法[J]. 北京理工大学学报, 2018, 38(5): 511−518.
|
|
MA J T, GAO M G, GUO B F, et al. High resolution ISAR imaging of space target based on two-dimensional sparse characteristics [J]. Transcations of Beijing Institute of Technology, 2018, 38(5): 603−608.
|
| 9 |
余发军, 刘义才. 基于改进量子进化算法的稀疏特征提取方法[J]. 北京理工大学学报, 2020, 40 (5): 512- 518.
|
|
YU F J, LIU Y C. A sparse feature extraction method based on improved quantum evolutionary algorithm[J]. Transcations of Beijing Institute of Technology, 2020, 40 (5): 512- 518.
|
| 10 |
BAI Y C, TANG M. Object tracking via robust multitask sparse representation[J]. IEEE Signal Processing Letters, 2014, 21 (8): 909- 913.
doi: 10.1109/LSP.2014.2320291
|
| 11 |
ZHANG Z, ZHAO M B, TOMMY W S. Binary and multi-class group sparsecanonical correlation analysis for feature extraction and classification[J]. IEEE Trans. on Knowledgeand Data Engineering, 2013, 25 (10): 2129- 2205.
|
| 12 |
SINGH G, CHILUVERU S R, RAMAN B, et al. Novel architecture for liftingdiscrete wavelet packet transform with arbitrary tree structure[J]. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2021, 29 (7): 1490- 1494.
|
| 13 |
SHI J, LIU X P, XIANG W, et al. Novel fractional wavelet packet transform: theory, implementation, and applications[J]. IEEE Trans. on Signal Processing, 2020, 68 (7): 4041- 4054.
|
| 14 |
PANCHOLI S, JOSHI A M. Improved classification scheme using fused wavelet packet transform based features for intelligent myoelectric prostheses[J]. IEEE Trans. on Industrial Electronics, 2020, 67 (10): 8517- 8525.
doi: 10.1109/TIE.2019.2946536
|
| 15 |
PUN C M, LEE M C. Extraction of shift invariant wavelet features for classification of images with different sizes[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26 (9): 1228- 1233.
doi: 10.1109/TPAMI.2004.67
|
| 16 |
HU Q, QIN A S, ZHANG Q H, et al. Fault diagnosis based on weighted extreme learning machine with wavelet packet decomposition and KPCA[J]. IEEE Sensors Journal, 2018, 18 (20): 8472- 8483.
doi: 10.1109/JSEN.2018.2866708
|
| 17 |
HE H, CHENG S J, ZHANG Y B. Home network power-line communication signal processing based on wavelet packet analysis[J]. IEEE Trans. on Power Delivery, 2005, 20 (3): 1879- 1885.
doi: 10.1109/TPWRD.2004.843489
|
| 18 |
SALVADOR M Z, RESMINI R G, GOMEZ R B. Detection of sulfur dioxide in AIRS data with the wavelet packet subspace[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (1): 137- 141.
doi: 10.1109/LGRS.2008.2009645
|
| 19 |
ROSSANT F , MIKOVICOVA B , ADAM M ,et al.A robust iris identification system based on wavelet packet decomposition and local comparisons of the extracted signatures[J].EURASIP Journal on Advances in Signal Processing, 2010.DOI:10.1155/2010/415307.
|
| 20 |
WEICKERT T, BENJAMINSEN C. Analytic wavelet packets—combining the dual-tree approach with wavelet packets for signal analysis and filtering[J]. IEEE Trans. on Signal Processing, 2009, 57 (2): 493- 502.
doi: 10.1109/TSP.2008.2007922
|
| 21 |
ZHA X, FU R, DAI Z. Noise reduction in interferograms using the wavelet packet transform and wiener filtering[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5 (3): 404- 408.
doi: 10.1109/LGRS.2008.916066
|
| 22 |
BRECHET L, LUCAS M F. Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection[J]. IEEE Trans. on Biomedical Engineering, 2007, 54 (12): 2186- 2192.
doi: 10.1109/TBME.2007.896596
|
| 23 |
GYANENDRA S R, CHILUVERU B, RAMAN. Memory efficient architecture for lifting-based discrete wavelet packet transform[J] IEEE Trans. on Circuits and Systems II: Express Briefs, 2021, 68(4): 1373−1377.
|
| 24 |
ANDREOPOULOS Y. Generalized phase shifting for M-band discrete wavelet packet transforms[J]. IEEE Trans. on Signal Processing, 2007, 55 (2): 742- 747.
doi: 10.1109/TSP.2006.885743
|
| 25 |
KARMAKAR A, KUMAR. Design of optimal wavelet packet trees based on auditory perception criterion[J]. IEEE Signal Processing Letters, 2007, 14 (4): 240- 243.
doi: 10.1109/LSP.2006.884129
|
| 26 |
MOHAMED K, MASHAEL A. Shannon differential entropy properties of consecutive k-out-of-n: G systems[J]. Operations Research Letters, 2024, 57, 107190.
doi: 10.1016/j.orl.2024.107190
|
| 27 |
MOHSEN Z, COLE D, DONALD J. Largest Lyapunov exponent and Shannon entropy: Two indices to analyze mixing in fluidized beds[J]. Chemical Engineering Research and Design, 2024, 210 (10): 59- 70.
|
| 28 |
SERGIO J, MARTÍNEZ G, PABLO P. Analysis of Shannon’s entropy to contrastbetween the Embodied and Neurocentrist hypothesis of conscious experience[J] BioSystems, 2024, 26(12): 105323.
|
| 29 |
ZHENG Y, ZHENG P. Image matching based on Fast PCA-SIFT descriptorswith automatic determination of dimensionality for PCA[C]// Proc. of the IEEE 2nd International Conference on Information Communication and Software Engineering, 2022: 115−120.
|
| 30 |
REHMAN A, KHAN A, ALI M A. Performance analysis of PCA, sparse PCA, kernel PCA and incremental PCA algorithms for heart failure prediction[C]// Proc. of the International Conference on Electrical, Communication, and Computer Engineering, 2020.
|
| 31 |
VO D M, SUNGYOUNG L. Two-dimensional weighted PCA algorithm for face recognition[C]// Proc. of the International Symposium on Computational Intelligence in Robotics and Automation, 2005: 219−223.
|