系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (7): 2304-2313.doi: 10.12305/j.issn.1001-506X.2025.07.23
• 系统工程 • 上一篇
李明华1, 潘星2,3,*, 张耐民4, 胡彭炜5, 党宇恒2
收稿日期:
2025-01-07
出版日期:
2025-07-16
发布日期:
2025-07-22
通讯作者:
潘星
作者简介:
李明华 (1962—), 男, 研究员, 硕士, 主要研究方向为航天飞行器设计与控制、工程管理基金资助:
Minghua LI1, Xing PAN2,3,*, Naimin ZHANG4, Pengwei HU5, Yuheng DANG2
Received:
2025-01-07
Online:
2025-07-16
Published:
2025-07-22
Contact:
Xing PAN
摘要:
体系是系统朝着复杂化发展的必然方向, 体系可靠性是体系稳定正常运行的重要保障。首先, 由体系与体系工程出发, 分析当前体系可靠性研究现状和存在的问题。其次, 对装备体系可靠性相关概念进行剖析, 提出装备体系可靠性定义和可靠性技术框架, 包括体系可靠性能力分析、面向可靠性的体系架构开发以及体系可靠性验证评价。随后, 结合航天工程实践, 提出航天装备体系可靠性内涵, 对航天装备体系可靠性包含的生存性、稳健性、保障性等方面的技术应用进行介绍。最后, 从体系可靠性内涵、体系故障机理、网络可靠性、体系可靠性技术、体系可靠性工程管理等方面对装备体系可靠性研究发展的挑战进行展望, 为体系可靠性尤其是装备体系可靠性研究提供借鉴。
中图分类号:
李明华, 潘星, 张耐民, 胡彭炜, 党宇恒. 装备体系可靠性理论及航天工程实践[J]. 系统工程与电子技术, 2025, 47(7): 2304-2313.
Minghua LI, Xing PAN, Naimin ZHANG, Pengwei HU, Yuheng DANG. Reliability theory of equipment system-of-systems and aerospace engineering practice[J]. Systems Engineering and Electronics, 2025, 47(7): 2304-2313.
1 | ISO/IEC/IEEE 21839. Systems and software engineering-system of systems (SoS) considerations in life cycle stages of a system[S]. U.S.: IEEE, 2019. |
2 | YANG Z , DONG X B , GUO L . Scenario inference model of urban metro system cascading failure under extreme rainfall conditions[J]. Reliability Engineering & System Safety, 2023, 229, 108888. |
3 | THACKER S , PANT R , HALL J W . System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures[J]. Reliability Engineering & System Safety, 2017, 167, 30- 41. |
4 | CHEN L W , DUI H Y , ZHANG C . A resilience measure for supply chain systems considering the interruption with the cyber-physical systems[J]. Reliability Engineering & System Safety, 2020, 199, 106869. |
5 | CAVALLO A , IRELAND V . Preparing for complex interdependent risks: a system of systems approach to building disaster resilience[J]. International Journal of Disaster Risk Reduction, 2014, 9, 181- 193. |
6 | YANG B F , ZHANG L , ZHANG B , et al. Complex equipment system resilience: composition, measurement and element analysis[J]. Reliability Engineering & System Safety, 2022, 228, 108783. |
7 | CHEN Z W , ZHOU Z M , ZHANG L G , et al. Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop[J]. Journal of Systems and Engineering and Electronics, 2023, 34 (3): 588- 597. |
8 | MA L J , ZHANG X , LI J Q , et al. Enhancing robustness and resilience of multiplex networks against node-community cascading failures[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2022, 52 (6): 3808- 3821. |
9 | DUAN D L , LV C C , SI S B , et al. Universal behavior of cascading failures in interdependent networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (45): 22452- 22457. |
10 | PAN X , WANG H X , YANG Y J , et al. Resilience based importance measure analysis for SoS[J]. Journal of Systems Engineering and Electronics, 2019, 30 (5): 920- 930. |
11 | 张维明, 刘忠, 阳东升, 等. 体系工程理论与方法[M]. 北京: 科学出版社, 2010. |
ZHANG W M , LIU Z , YANG D S , et al. Theory and methods of system of systems engineering[M]. Beijing: Press of Science, 2010. | |
12 | WU T H , GONG P , LI Y . Future cities as a system of systems: its concept, mechanism and creation[J]. Chinese Science Bulletin-Chinese, 2022, 67 (1): 18- 26. |
13 | PAN X , DANG Y H , WANG H X , et al. Resilience model and recovery strategy of transportation network based on travel OD-grid analysis[J]. Reliability Engineering & System Safety, 2022, 223, 108483. |
14 | Department of Defense . Systems engineering guide for systems of systems[M]. Washington, DC: US Department of Defense, 2008. |
15 | MAIER M W . Architecting principles for systems-of-systems[J]. Systems Engineering, 1998, 1 (4): 267- 284. |
16 | CLARK J O. System of systems engineering and family of systems engineering from a standard, V-model, and dual-V model perspective[C]//Proc. of the 3rd Annual IEEE Systems Confe-rence, 2009: 381-387. |
17 | KEATING C B , PADILLA J J , ADAMS K . System of systems engineering requirements: challenges and guidelines[J]. Engineering Management Journal, 2008, 20 (4): 24- 31. |
18 | 顾基发. 系统工程新发展——体系[J]. 科技导报, 2018, 36 (20): 10- 19. |
GU J F . The new development of system engineering-system of systems[J]. Science and Technology Review, 2018, 36 (20): 10- 19. | |
19 | 游光荣, 孙晓, 王继民, 等. 国内体系工程研究态势分析与发展建议[J]. 中国电子科学院学报, 2013, 8 (6): 583- 592. |
YOU G R , SUN X , WANG J M , et al. Bibliometric analysis and development proposals on China's system of systems engineering research[J]. Journal of China Academy of Electronics and Information Technology, 2013, 8 (6): 583- 592. | |
20 | 李明华. 航天装备体系工程手册[M]. 北京: 中国宇航出版社, 2024. |
LI M H . Handbook of aerospace equipment system of systems engineering[M]. Beijing: China Astronautic Publishing House, 2024. | |
21 | DERSIN P , ANDREA B , DRAGAN K , et al. Reliability and resilience of systems of systems[J]. IEEE Reliability Magazine, 2024, 1 (4): 90- 99. |
22 | JIAO T C , YUAN H , WANG J , et al. System-of-systems resilience analysis and design using Bayesian and dynamic Bayesian networks[J]. Mathematics, 2024, 12 (16): 2510. |
23 | WANG Z , LIU S F , FANG Z G . Research on SoS-GERT network model for equipment system of systems contribution evaluation based on joint operation[J]. IEEE Systems Journal, 2020, 14 (3): 4188- 4196. |
24 | WANG L Z , ZHAO X J , ZHANG Y , et al. Unmanned aerial vehicle swarm mission reliability modeling and evaluation method oriented to systematic and networked mission[J]. Chinese Journal of Aeronautics, 2021, 34 (2): 466- 478. |
25 |
陈志伟, 张罗庚, 方晓彤, 等. 装备体系可靠性概念、建模与预计方法研究[J]. 系统工程与电子技术, 2024, 46 (6): 1975- 1985.
doi: 10.12305/j.issn.1001-506X.2024.06.15 |
CHEN Z W , ZHANG L G , FANG X T , et al. Reliability concepts, modeling, and prediction methods for weapon system of systems[J]. Systems Engineering and Electronics, 2024, 46 (6): 1975- 1985.
doi: 10.12305/j.issn.1001-506X.2024.06.15 |
|
26 | LI J C , TAN Y J , YANG KW , et al. Structural robustness of combat networks of weapon system-of-systems based on the operation loop[J]. International Journal of Systems Science, 2016, 48 (3): 659- 674. |
27 | MARKINA-KHUSID A , JACOBS R B , ANTUL L , et al. A complex network framework for validated assessments of systems of systems robustness[J]. IEEE System Journal, 2022, 16 (1): 1092- 1102. |
28 | XU R J , LIU J H , LI J C , et al. TSoSRA: a task-oriented resilience assessment framework for system-of-systems[J]. Reliability Engineering & System Safety, 2024, 248, 110186. |
29 | SILVA R D , BRAGA R T V . Simulating systems-of-systems with agent-based modeling: a systematic literature review[J]. IEEE Systems Journal, 2020, 14 (3): 3609- 3617. |
30 | FENG S , SUN H W , YAN X T , et al. Dense reinforcement learning for safety validation of autonomous vehicles[J]. Nature, 2023, 615 (7953): 620- 627. |
31 |
潘星, 张振宇, 张曼丽, 等. 基于SoSE的装备体系RMS论证方法研究[J]. 系统工程与电子技术, 2019, 41 (8): 1771- 1779.
doi: 10.3969/j.issn.1001-506X.2019.08.14 |
PAN X , ZHANG Z Y , ZHANG M L , et al. Research on RMS demonstration method of equipment SoS based on SoSE[J]. Systems Engineering and Electronics, 2019, 41 (8): 1771- 1779.
doi: 10.3969/j.issn.1001-506X.2019.08.14 |
|
32 | LIN M L , CHEN T , REN B B , et al. CADer: a deep reinforcement learning approach for designing the communication architecture of system of systems[J]. IEEE Trans.on Intelligent Vehicles, 2023, 8 (5): 3405- 3417. |
33 |
FATURECHI R , MILLER-HOOKS E . Measuring the performance of transportation infrastructure systems in disasters: a comprehensive review[J]. Journal of Infrastructure Systems, 2015, 21 (1)
doi: 10.1061/ASCEIS.1943-555X.0000212 |
34 | CHEN Z W , HONG D P , CUI W W , et al. Resilience evaluation and optimal design for weapon system of systems with dynamic reconfiguration[J]. Reliability Engineering & System Safety, 2023, 237, 109409. |
35 | CHERFA I , BELLOIR N , SADOU S , et al. Systems of systems: from mission definition to architecture description[J]. Systems Engineering, 2019, 22 (6): 437- 454. |
36 | ABDESSALAM E , YEHIA E , VATSALA N , et al. Principled and automated system of systems composition using an ontological architecture[J]. Future Generation Computer Systems, 2024, 157, 499- 515. |
37 | GE B F , HIPEL K W , YANG K W , et al. A novel executable modeling approach for system-of-systems architecture[J]. IEEE Systems Journal, 2014, 8 (1): 4- 13. |
38 |
潘星, 黄元星, 尹宝石. 基于功能和联接的装备体系结构[J]. 系统工程与电子技术, 2012, 34 (10): 2052- 2057.
doi: 10.3969/j.issn.1001-506X.2012.10.13 |
PAN X , HUANG Y X , YIN B S . Equipment system of systems architecture based on function and connection[J]. Systems Engineering and Electronics, 2012, 34 (10): 2052- 2057.
doi: 10.3969/j.issn.1001-506X.2012.10.13 |
|
39 |
潘星, 尹宝石, 温晓华. 基于DoDAF的装备体系任务建模与仿真[J]. 系统工程与电子技术, 2012, 34 (9): 1846- 1851.
doi: 10.3969/j.issn.1001-506X.2012.09.17 |
PAN X , YIN B S , WEN X-H . Mission modeling and simulation for equipment system of systems based on DoDAF[J]. Systems Engineering and Electronics, 2012, 34 (9): 1846- 1851.
doi: 10.3969/j.issn.1001-506X.2012.09.17 |
|
40 | HOLLING C S . Resilience and stability of ecological systems[M]. London: Cambridge University Press, 2022. |
41 | FRANCISCO H C F , ELISA Y N , ANTONIA B , et al. A framework for the design of fault-tolerant systems-of-systems[J]. Journal of Systems and Software, 2024, 211, 112010. |
42 | POTTS M W , SARTOR P A , JOHNSON A . A network perspective on assessing system architectures: robustness to cascading failure[J]. Systems Engineering, 2020, 23 (5): 597- 616. |
43 | TRAN H T , DOMERCANT J C , MAVRIS D N . Evaluating the agility of adaptive command and control networks from a cyber complex adaptive systems perspective[J]. Journal of Defense Modeling and Simulation, 2015, 12 (4): 405- 422. |
44 | GAO J , BARZEL B , BARABASI A L . Universal resilience patterns in complex networks[J]. Nature, 2016, 530 (7590): 307- 312. |
45 | ANDRADE S R , HULSE D E . Evaluation and improvement of system-of-systems resilience in a simulation of wildfire emergency response[J]. IEEE Systems Journal, 2022, 17 (2): 1877- 1888. |
46 | GAO J X , BULDYREV S V , HAVLIN S , et al. Robustness of a network of networks[J]. Physical Review Letters, 2011, 107, 195701. |
47 | HOLT J , PERRY S , PAYNE R , et al. A model-based approach for requirements engineering for systems of systems[J]. IEEE Systems Journal, 2015, 9 (1): 252- 262. |
48 | UDAY P , CHANDRAHASA R , MARAIS K . System importance measures: definitions and application to system-of-systems analysis[J]. Reliability Engineering & System Safety, 2019, 191, 106582. |
49 |
潘星, 左督军, 张跃东. 基于系统动力学的装备体系贡献率评估方法[J]. 系统工程与电子技术, 2021, 43 (1): 112- 120.
doi: 10.3969/j.issn.1001-506X.2021.01.14 |
PAN X , ZUO D J , ZHANG Y D . Contribution rate evaluation method of equipment system-of-systems based on system dynamics[J]. Systems Engineering and Electronics, 2021, 43 (1): 112- 120.
doi: 10.3969/j.issn.1001-506X.2021.01.14 |
|
50 | UDAY P , MARAIS K . Designing resilient systems-of-systems: a survey of metrics, methods, and challenges[J]. Systems Engineering, 2015, 18 (5): 491- 510. |
51 | LIU J H , XU R J , LI J C , et al. Enhancing the resilience of combat system-of-systems under continuous attacks: novel index and reinforcement learning-based protection optimization[J]. Expert Systems with Applications, 2024, 251, 123912. |
52 | SUN Q , LI H X , ZHONG Y F , et al. Deep reinforcement learning-based resilience enhancement strategy of unmanned weapon system-of-systems under inevitable interferences[J]. Reliability Engineering & System Safety, 2024, 242, 109749. |
53 |
潘星, 张国忠, 张跃东, 等. 工程弹性系统与系统弹性理论研究综述[J]. 系统工程与电子技术, 2019, 41 (9): 2006- 2015.
doi: 10.3969/j.issn.1001-506X.2019.09.13 |
PAN X , ZHANG G Z , ZHANG Y D , et al. Review of engineered resilient systems and system resilience theory[J]. Systems Engineering and Electronics, 2019, 41 (9): 2006- 2015.
doi: 10.3969/j.issn.1001-506X.2019.09.13 |
[1] | 柳佳豪, 徐任杰, 孙茂桐, 姜九瑶, 李际超, 杨克巍. 基于强化学习的装备体系韧性优化方法[J]. 系统工程与电子技术, 2025, 47(7): 2216-2223. |
[2] | 张靖如, 方志耕, 孙云柯, 吴双, 陈顶. 多阶段攻防对抗体系效能评估MS-GERT模型[J]. 系统工程与电子技术, 2025, 47(7): 2237-2245. |
[3] | 吴北苹, 何晶, 党慧莹, 岳地久. 基于作战环的反无人机作战体系贡献率评估[J]. 系统工程与电子技术, 2025, 47(7): 2267-2274. |
[4] | 甄子清, 黄栋, 韩松, 冯浩明. 舰艇服役期经济性评价指标体系构建[J]. 系统工程与电子技术, 2025, 47(7): 2275-2282. |
[5] | 崔瑞靖, 孙建彬, 杨克巍, 李明浩. 基于UAF的装备作战试验指标体系构建方法[J]. 系统工程与电子技术, 2025, 47(5): 1536-1550. |
[6] | 陈顶, 方志耕, 杨保华, 叶丰, 张娜, 张靖如. 考虑指标协同效应重构的联合作战体系效能评估灰色主成分模型[J]. 系统工程与电子技术, 2025, 47(5): 1561-1574. |
[7] | 尚晓凡, 薛奇, 高欣, 刘同. 面向能力需求的装备组合配置分析方法[J]. 系统工程与电子技术, 2025, 47(5): 1575-1581. |
[8] | 王子怡, 傅雄军, 董健, 冯程. 基于分层多智能体强化学习的雷达协同抗干扰策略优化[J]. 系统工程与电子技术, 2025, 47(4): 1108-1114. |
[9] | 刘麦笛, 李际超, 杨志伟, 杨克巍. 基于多层网络的混合战争体系建模方法[J]. 系统工程与电子技术, 2025, 47(4): 1195-1205. |
[10] | 燕笑寒, 柴华, 许强强. 基于杀伤网评估的美导弹防御体系效能分析[J]. 系统工程与电子技术, 2025, 47(4): 1235-1245. |
[11] | 杨天建, 王星, 程嗣怡, 陈游, 张曦, 张志恒. 基于IAHP-CRITIC-MARCOS的多种类目标威胁评估[J]. 系统工程与电子技术, 2025, 47(4): 1246-1254. |
[12] | 张玉婷, 杨镜宇. 基于XGboost和线性回归的军队体系建设“成本-能力”组合优化模型[J]. 系统工程与电子技术, 2025, 47(2): 486-495. |
[13] | 李嘉乐, 钟绮霖, 肖杰, 李国飞. 多智能体系统自适应固定时间编队控制[J]. 系统工程与电子技术, 2025, 47(2): 600-607. |
[14] | 冯蕴雯, 陈俊宇, 路成, 刘晚移. 基于领域系统的复杂装备技术状态管理建模方法[J]. 系统工程与电子技术, 2025, 47(1): 126-140. |
[15] | 王远, 贡岩, 刘立业. 基于两层三模超网络的区域防空作战体系分析[J]. 系统工程与电子技术, 2025, 47(1): 182-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||