系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 486-495.doi: 10.12305/j.issn.1001-506X.2025.02.15

• 系统工程 • 上一篇    

基于XGboost和线性回归的军队体系建设“成本-能力”组合优化模型

张玉婷1,2,*, 杨镜宇3   

  1. 1. 国防大学研究生院, 北京 100091
    2. 海军参谋部, 北京 100841
    3. 国防大学联合作战学院, 北京 100091
  • 收稿日期:2023-11-03 出版日期:2025-02-25 发布日期:2025-03-18
  • 通讯作者: 张玉婷
  • 作者简介:张玉婷 (1991—), 女, 工程师, 博士研究生, 主要研究方向为联合作战体系仿真分析与评估
    杨镜宇 (1971—), 男, 高级工程师, 博士研究生导师, 博士, 主要研究方向为联合作战体系仿真分析与评估

A cost-capability combination optimization model for military system construction based on XGboost and linear regression

Yuting ZHANG1,2,*, Jingyu YANG3   

  1. 1. Graduate School, National Defense University, Beijing 100091
    2. Naval Staff, Beijing 100841, China
    3. Joint Operations College, National Defense University, Beijing 100091, China
  • Received:2023-11-03 Online:2025-02-25 Published:2025-03-18
  • Contact: Yuting ZHANG

摘要:

不确定性条件下的体系能力评估和优化是提升军事体系建设效能的重要方式和手段。着眼军队体系建设中多种“成本-能力”方案优选问题, 借鉴投资组合优化理论, 采用极端梯度提升(eXtreme gradient boosting, XGboost)二分类模型、线性回归、三点估计等方法, 构建“成本-能力”组合优化模型, 汇总多个评估标准, 得出备选方案的经济价值和对备选方案不确定性的敏感程度, 综合分析, 得到最优备选方案, 并将模型应用于体系建设案例中进行验证, 研究成果为“成本-能力”组合备选方案评估优选提供理论依据及实践方法。

关键词: 组合优化, XGboost二分类, 线性回归, 三点估计, 体系能力

Abstract:

Evaluating and optimizing system of system (SoS) capabilities under uncertain conditions is an important way and means to enhance the efficiency of military system construction. This paper focuses on the optimization problem of multiple "cost-capability" options in the construction of the military system. Drawing on the theory of portfolio optimization, eXtreme gradient boosting (XGboost) binary classification model, linear regression, three-point estimation and other methods are used to construct a "cost-capability" combination optimization model. Multiple evaluation criteria are summarized to determine the economic value and sensitivity to the uncertainty of the alternative options. The optimal alternative solution is comprehensively analyzed and applied to a system construction cases for verification. The research results provide theoretical basis and practical methods for the evaluation and optimization of "cost-capability" combination alternative options.

Key words: combination optimization, eXtreme gradient boosting (XGboost) binary classification, linear regression, three-point estimation, system of system (SoS) capability

中图分类号: