系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 486-495.doi: 10.12305/j.issn.1001-506X.2025.02.15
• 系统工程 • 上一篇
张玉婷1,2,*, 杨镜宇3
收稿日期:
2023-11-03
出版日期:
2025-02-25
发布日期:
2025-03-18
通讯作者:
张玉婷
作者简介:
张玉婷 (1991—), 女, 工程师, 博士研究生, 主要研究方向为联合作战体系仿真分析与评估Yuting ZHANG1,2,*, Jingyu YANG3
Received:
2023-11-03
Online:
2025-02-25
Published:
2025-03-18
Contact:
Yuting ZHANG
摘要:
不确定性条件下的体系能力评估和优化是提升军事体系建设效能的重要方式和手段。着眼军队体系建设中多种“成本-能力”方案优选问题, 借鉴投资组合优化理论, 采用极端梯度提升(eXtreme gradient boosting, XGboost)二分类模型、线性回归、三点估计等方法, 构建“成本-能力”组合优化模型, 汇总多个评估标准, 得出备选方案的经济价值和对备选方案不确定性的敏感程度, 综合分析, 得到最优备选方案, 并将模型应用于体系建设案例中进行验证, 研究成果为“成本-能力”组合备选方案评估优选提供理论依据及实践方法。
中图分类号:
张玉婷, 杨镜宇. 基于XGboost和线性回归的军队体系建设“成本-能力”组合优化模型[J]. 系统工程与电子技术, 2025, 47(2): 486-495.
Yuting ZHANG, Jingyu YANG. A cost-capability combination optimization model for military system construction based on XGboost and linear regression[J]. Systems Engineering and Electronics, 2025, 47(2): 486-495.
表1
备选方案S1输入数据"
序号 | 能力 | 成本 | 预算 | 决策值 | Logistic | |||||
1 | 2 | 3 | 4 | 5 | 6 | |||||
1 | 83 | 82 | 91 | 94 | 95 | 85 | 9.469 5 | 9.00 | 0 | 0.07 |
2 | 85 | 82 | 94 | 81 | 95 | 85 | 9.314 0 | 9.00 | 0 | 0.07 |
3 | 85 | 82 | 94 | 93 | 95 | 85 | 9.782 9 | 9.00 | 0 | 0.07 |
4 | 85 | 82 | 91 | 81 | 89 | 85 | 9.006 1 | 9.00 | 1 | 0.64 |
5 | 85 | 82 | 91 | 94 | 95 | 85 | 9.522 8 | 9.00 | 0 | 0.07 |
6 | 85 | 82 | 91 | 94 | 89 | 85 | 9.487 9 | 9.00 | 0 | 0.21 |
7 | 69 | 82 | 91 | 81 | 95 | 85 | 8.779 5 | 9.00 | 0 | 0.26 |
8 | 69 | 82 | 91 | 81 | 95 | 77 | 8.733 6 | 9.00 | 1 | 0.92 |
9 | 69 | 82 | 91 | 81 | 95 | 74 | 8.542 0 | 9.00 | 1 | 0.92 |
10 | 69 | 82 | 91 | 81 | 95 | 75 | 8.508 4 | 9.00 | 1 | 0.92 |
11 | 69 | 82 | 91 | 81 | 89 | 85 | 8.744 6 | 9.00 | 0 | 0.57 |
12 | 69 | 82 | 91 | 81 | 89 | 74 | 8.507 1 | 9.00 | 1 | 0.95 |
13 | 69 | 82 | 91 | 81 | 89 | 75 | 8.473 5 | 9.00 | 1 | 0.95 |
14 | 69 | 82 | 91 | 93 | 95 | 85 | 9.248 4 | 9.00 | 0 | 0.07 |
15 | 69 | 82 | 91 | 93 | 89 | 85 | 9.213 5 | 9.00 | 0 | 0.36 |
16 | 69 | 82 | 91 | 94 | 95 | 85 | 9.261 3 | 9.00 | 0 | 0.07 |
17 | 69 | 82 | 91 | 94 | 89 | 85 | 9.226 4 | 9.00 | 1 | 0.36 |
18 | 69 | 70 | 91 | 81 | 95 | 74 | 8.378 6 | 9.00 | 1 | 0.92 |
19 | 69 | 70 | 91 | 81 | 82 | 74 | 8.210 7 | 9.00 | 1 | 0.95 |
20 | 69 | 74 | 91 | 81 | 95 | 74 | 8.314 4 | 9.00 | 1 | 0.92 |
表2
备选方案S2输入数据"
序号 | 能力 | 成本 | 预算 | 决策值 | Logistic | |||||
1 | 2 | 3 | 4 | 5 | 6 | |||||
1 | 74 | 77 | 88 | 78 | 82 | 74 | 8.301 9 | 9.00 | 1 | 0.95 |
2 | 85 | 86 | 88 | 78 | 90 | 74 | 8.690 7 | 9.00 | 1 | 0.95 |
3 | 85 | 86 | 88 | 94 | 90 | 82 | 9.410 0 | 9.00 | 0 | 0.21 |
4 | 85 | 86 | 88 | 94 | 90 | 74 | 9.172 5 | 9.00 | 0 | 0.89 |
5 | 85 | 88 | 92 | 94 | 90 | 82 | 9.707 6 | 9.00 | 0 | 0.21 |
6 | 85 | 88 | 88 | 78 | 94 | 79 | 8.941 8 | 9.00 | 0 | 0.94 |
7 | 85 | 88 | 88 | 78 | 94 | 74 | 8.750 2 | 9.00 | 1 | 0.92 |
8 | 85 | 88 | 88 | 78 | 90 | 82 | 8.952 8 | 9.00 | 0 | 0.64 |
9 | 85 | 88 | 88 | 78 | 90 | 74 | 8.715 3 | 9.00 | 0 | 0.95 |
10 | 85 | 88 | 88 | 78 | 90 | 73 | 8.681 7 | 9.00 | 1 | 0.95 |
11 | 85 | 88 | 88 | 93 | 94 | 74 | 9.219 1 | 9.00 | 0 | 0.83 |
12 | 85 | 88 | 88 | 93 | 90 | 82 | 9.421 7 | 9.00 | 0 | 0.21 |
13 | 85 | 88 | 88 | 93 | 90 | 74 | 9.184 2 | 9.00 | 0 | 0.89 |
14 | 85 | 88 | 88 | 94 | 94 | 82 | 9.469 5 | 9.00 | 0 | 0.07 |
15 | 85 | 88 | 88 | 94 | 94 | 74 | 9.232 0 | 9.00 | 0 | 0.83 |
16 | 85 | 88 | 88 | 94 | 90 | 82 | 9.434 6 | 9.00 | 0 | 0.21 |
17 | 85 | 88 | 88 | 94 | 90 | 74 | 9.197 1 | 9.00 | 1 | 0.89 |
18 | 88 | 88 | 92 | 94 | 90 | 82 | 9.761 0 | 9.00 | 0 | 0.21 |
19 | 88 | 88 | 88 | 78 | 94 | 74 | 8.803 5 | 9.00 | 1 | 0.92 |
20 | 88 | 88 | 88 | 78 | 90 | 82 | 9.006 1 | 9.00 | 0 | 0.64 |
表6
敏感性分析结果"
备选方案S1 | 概率 | ln(E(r)) | 备选方案S2 | 概率 | ln(E(r)) | |||
边际效应 | 能力1 | 0.02 | 0.02 | 边际效应 | 能力1 | 0 | 0.02 | |
能力2 | 0.03 | 0.04 | 能力2 | 0 | 0.01 | |||
能力3 | 0.01 | 0.16 | 能力3 | 0.01 | 0.04 | |||
能力4 | 0.04 | 0.06 | 能力4 | 0.01 | 0.02 | |||
能力5 | 0.03 | 0.02 | 能力5 | 0 | 0.02 | |||
能力6 | 0.01 | 0.05 | 能力6 | 0.03 | 0.01 | |||
预算 | 0.06 | 0.42 | 预算 | 0.04 | 0.13 | |||
三点估计 | 最小值 | 0.01 | 8.85 | 三点估计 | 最小值 | 0.23 | 8.62 | |
最可能值 | 0.64 | 8.94 | 最可能值 | 0.6 | 9.26 | |||
最大值 | 1 | 9.29 | 最大值 | 0.87 | 9.9 | |||
标准差 | 0.389 | 0.149 | 标准差 | 0.331 | 0.112 |
1 | MARKOWITZ H . Portfolio selection[J]. The Journal of Finance, 1952, 7 (1): 77- 91. |
2 |
BAKER S F , GREEN S G , LOWE J K , et al. A value-focused approach for laboratory equipment purchases[J]. Military Ope-rations Research, 2000, 5 (4): 43- 56.
doi: 10.5711/morj.5.4.43 |
3 |
WALMSLEY N S , HEARN P . An application of linear programming in the defence environment[J]. International Transactions in Operational Research, 2003, 10 (2): 155- 167.
doi: 10.1111/1475-3995.00401 |
4 |
TSAGANEA D . Appropriation of funds for anti-ballistic missile defense: a dynamic model[J]. Kybernetes, 2005, 34 (6): 824- 833.
doi: 10.1108/03684920510595517 |
5 | WHITACRE J M, ABBASS H A, SARKER R, et al. Strategic positioning in tactical scenario planning[C]//Proc. of the 10th Annual Conference on Genetic and Evolutionary Computation, 2008: 1081-1088. |
6 |
HURLEY W J , SCHOBEL K B . Selecting low expenditure defence projects: an estimate of the value of optimization relative to AD HOC procedures[J]. Military Operations Research, 2009, 14 (4): 41- 46.
doi: 10.3969/j.issn.1672-8211.2009.04.008 |
7 | LEE J , KANG S H , ROSENBERGER J , et al. A hybrid approach of goal programming for weapon systems selection[J]. Computers & Industrial Engineering, 2010, 58 (3): 521- 527. |
8 |
GOLANY B , KRESS M , PENN M , et al. Network optimization models for resource allocation in developing military countermeasures[J]. Operations Research, 2012, 60 (1): 48- 63.
doi: 10.1287/opre.1110.1002 |
9 |
DAVENDRALINGAM N , DELAURENTIS D A . A robust portfolio optimization approach to system of system architectures[J]. Systems Engineering, 2015, 18 (3): 269- 283.
doi: 10.1002/sys.21302 |
10 | MOALLEMI E A, ELSAWAH S, TURAN H H, et al. Multi-objective decision making in multi-period acquisition planning under deep uncertainty[C]//Proc. of the Winter Simulation Conference, 2018: 1334-1345. |
11 | JONES D W , BJORNSTAD D J , REDUS K S . Prioritizing R&D for the US department of energy's weapons complex clean-up[J]. Environmental Modeling & Assessment, 2001, 6, 209- 215. |
12 |
BUCKSHAW D L , PARNELL G S , UNKENHOLZ W L , et al. Mission oriented risk and design analysis of critical information systems[J]. Military Operations Research, 2005, 10 (2): 19- 38.
doi: 10.5711/morj.10.2.19 |
13 | BJORKMAN E A , SARKANI S , MAZZUCHI T A . Test and evaluation resource allocation using uncertainty reduction[J]. IEEE Trans.on Engineering Management, 2012, 60 (3): 541- 551. |
14 |
HURLEY W J , BRIMBERG J , FISHER B . Risk-analytic appro-aches to the allocation of defence operating funds[J]. The Journal of Defense Modeling and Simulation, 2013, 10 (3): 275- 282.
doi: 10.1177/1548512912466195 |
15 |
DAVENDRALINGAM N , DELAURENTIS D . An analytic portfolio approach to system of systems evolutions[J]. Procedia Computer Science, 2014, 28, 711- 719.
doi: 10.1016/j.procs.2014.03.085 |
16 |
CHAN Y , DISALVO J P , GARRAMBONE M W . A goal-seeking approach to capital budgeting[J]. Socio-Economic Planning Sciences, 2005, 39 (2): 165- 182.
doi: 10.1016/j.seps.2004.04.002 |
17 | PREISS B, GREENE L, KRIEBEL J, et al. Air force research laboratory space technology strategic investment model: analysis and outcomes for warfighter capabilities[C]//Proc. of the Modeling and Simulation for Military Applications, 2006: 14-21. |
18 |
BAKIRLI B B , GENCER C , AYDOGAN E K . A combined approach for fuzzy multi-objective multiple knapsack problems for defence project selection[J]. Journal of the Operational Research Society, 2014, 65, 1001- 1016.
doi: 10.1057/jors.2013.36 |
19 |
FISHER B , BRIMBERG J , HURLEY W J . An approximate dynamic programming heuristic to support non-strategic project selection for the Royal Canadian Navy[J]. The Journal of Defense Modeling and Simulation, 2015, 12 (2): 83- 90.
doi: 10.1177/1548512913509031 |
20 | XIN B , CHEN J , PENG Z H , et al. An efficient rule-based constructive heuristic to solve dynamic weapon-target assignment problem[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 41 (3): 598- 606. |
21 | ZHOU Y, TAN Y, YANG K W, et al. Research on evolving capability requirements oriented weapon system of systems portfolio planning[C]//Proc. of the 7th International Conference on System of Systems Engineering, 2012: 275-280. |
22 |
DOU Y J , ZHANG P , GE B F , et al. An integrated technology pushing and requirement pulling model for weapon system portfolio selection in defence acquisition and manufacturing[J]. Proc.of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229 (6): 1046- 1067.
doi: 10.1177/0954405414534640 |
23 |
YANG S L , YANG M , WANG S , et al. Adaptive immune genetic algorithm for weapon system portfolio optimization in mi-litary big data environment[J]. Cluster Computing, 2016, 19, 1359- 1372.
doi: 10.1007/s10586-016-0596-3 |
24 |
夏博远, 赵青松, 张骁雄, 等. 基于动态能力需求的鲁棒性武器系统组合决策[J]. 系统工程与电子技术, 2017, 39 (6): 1280- 1286.
doi: 10.3969/j.issn.1001-506X.2017.06.15 |
XIA B Y , ZHAO Q S , ZHANG X X , et al. Robust weapon system combination decision based on dynamic capability requirements[J]. Systems Engineering and Electronics, 2017, 39 (6): 1280- 1286.
doi: 10.3969/j.issn.1001-506X.2017.06.15 |
|
25 | 张骁雄, 葛冰峰, 姜江, 等. 面向能力需求的武器装备组合规划模型与算法[J]. 国防科技大学学报, 2017, 39 (1): 102- 108. |
ZHANG X X , GE B F , JIANG J , et al. A weapon equipment combination planning model and algorithm for capability requirements[J]. Journal of National University of Defense Technology, 2017, 39 (1): 102- 108. | |
26 | CHENG C, LI J C, ZHAO Q S, et al. Research on weapon system portfolio selection based on combat network modeling[C]//Proc. of the 2017 Annual IEEE International Systems Conference, 2017. |
27 | XIONG J , ZHOU Z B , TIAN K , et al. A multi-objective approach for weapon selection and planning problems in dynamic environments[J]. Journal of Industrial & Management Optimization, 2017, 13 (3): 1189- 1211. |
28 | WANG M, ZHANG H Q, ZHANG K. A model and solving algorithm of combination planning for weapon equipment based on epoch-era analysis method[C]//Proc. of the International Conference on Materials, Sciences, Resource and Environment Engineering, 2017. |
29 | 李清韦. 基于能力组合的体系能力水平评估方法研究[D]. 长沙: 国防科技大学, 2021. |
LI Q W. Research on system capability level evaluation method based on capability combination[D]. Changsha: National University of Defense Technology, 2021. | |
30 |
YANG S C , LIN T L , CHANG T J , et al. A semi-variance portfolio selection model for military investment assets[J]. Expert Systems with Applications, 2011, 38 (3): 2292- 2301.
doi: 10.1016/j.eswa.2010.08.017 |
31 |
XIONG J , YANG K W , LIU J , et al. A two-stage preference-based evolutionary multi-objective approach for capability planning problems[J]. Knowledge-Based Systems, 2012, 31, 128- 139.
doi: 10.1016/j.knosys.2012.02.003 |
32 | XIONG J , LIU J , CHEN Y W , et al. A knowledge-based evolutionary multi-objective approach for stochastic extended resource investment project scheduling problems[J]. IEEE Trans.on Evolutionary Computation, 2013, 18 (5): 742- 763. |
33 |
ZHOU Y , LI Y B , SHI Z Z , et al. A variables clustering based differential evolution algorithm to solve multistage goal programming model in defense projects portfolio[J]. Advanced Materials Research, 2014, 1046, 367- 370.
doi: 10.4028/www.scientific.net/AMR.1046.367 |
34 | ZHANG P L , YANG K W , DOU Y J , et al. Scenario-based approach for project portfolio selection in army engineering and manufacturing development[J]. Journal of Systems Engineering and Electronics, 2016, 27 (1): 166- 176. |
35 |
LI M H , LI M J , YANG K W , et al. A network-based portfolio optimization approach for military system of systems architecting[J]. IEEE Access, 2018, 6, 53452- 53472.
doi: 10.1109/ACCESS.2018.2870654 |
36 |
XIA B Y , ZHAD Q S , YANG K W , et al. Scenario-based modeling and solving research on robust weapon project planning problems[J]. Journal of Systems Engineering and Electronics, 2019, 30 (1): 85- 99.
doi: 10.21629/JSEE.2019.01.09 |
37 |
王涛, 李小波, 张杰, 等. 基于"项目-能力"关联的战略规划项目体系贡献率评估方法[J]. 系统工程与电子技术, 2023, 45 (8): 2295- 2304.
doi: 10.12305/j.issn.1001-506X.2023.08.01 |
WANG T , LI X B , ZHANG J , et al. A method for evaluating the contribution rate of strategic planning project systems based on the "project capability" correlation[J]. Systems Engineering and Electronics, 2023, 45 (8): 2295- 2304.
doi: 10.12305/j.issn.1001-506X.2023.08.01 |
|
38 |
BOWEN H R . The interpretation of voting in the allocation of economic resources[J]. The Quarterly Journal of Economics, 1943, 58 (1): 27- 48.
doi: 10.2307/1885754 |
39 |
CIRIACY-WANTRUP S V . Capital returns from soil-conservation practices[J]. Journal of Farm Economics, 1947, 29 (4): 1181- 1196.
doi: 10.2307/1232747 |
40 |
HANEMANN M W . Welfare evaluations in contingent valuation experiments with discrete responses[J]. American Journal of Agricultural Economics, 1987, 69 (1): 182- 184.
doi: 10.2307/1241322 |
41 |
CAMERON T A . A new paradigm for valuing non-market goods using referendum data: maximum likelihood estimation by censored logistic regression[J]. Journal of Environmental Economics and Management, 1988, 15 (3): 355- 379.
doi: 10.1016/0095-0696(88)90008-3 |
42 | SOKRI A, TEAM D E. Valuation of military training benefit: a contingent valuation method approach[R]. Ottaua: DRDC CORA Technical Memorandum, 2012. |
[1] | 张玉婷, 杨镜宇. 基于能力的国防资源分配方法[J]. 系统工程与电子技术, 2024, 46(2): 599-604. |
[2] | 王涛, 李小波, 张杰, 何华, 王维平. 基于“项目-能力”关联的战略规划项目体系贡献率评估方法[J]. 系统工程与电子技术, 2023, 45(8): 2295-2304. |
[3] | 陈子夷, 豆亚杰, 徐向前, 谭跃进, 杨克巍, 姜江. 共建共享双层策略驱动的复杂装备组合优化求解[J]. 系统工程与电子技术, 2023, 45(2): 431-443. |
[4] | 郭斐然, 于剑桥, 宋豹. 基于指派模型的导弹装备体系弹种优化设计[J]. 系统工程与电子技术, 2022, 44(3): 850-862. |
[5] | 马武彬, 王锐, 王威超, 吴亚辉, 邓苏, 黄宏斌. 基于进化多目标优化的微服务组合部署与调度策略[J]. 系统工程与电子技术, 2020, 42(1): 90-100. |
[6] | 张先超, 马亚辉. 体系能力模型与装备体系贡献率测度方法[J]. 系统工程与电子技术, 2019, 41(4): 843-849. |
[7] | 王星, 呙鹏程, 王玉冰, 程越. 基于线性回归分析的快速搜索聚类中心算法[J]. 系统工程与电子技术, 2017, 39(11): 2614-2622. |
[8] | 吴虎胜1,2, 张凤鸣2, 战仁军1, 李〓浩2, 梁晓龙3. 利用改进的二进制狼群算法求解多维背包问题[J]. 系统工程与电子技术, 2015, 37(5): 1084-1091. |
[9] | 吴虎胜, 张凤鸣, 战仁军, 汪送, 张超. 求解0-1背包问题的二进制狼群算法[J]. 系统工程与电子技术, 2014, 36(8): 1660-1667. |
[10] | 赵建忠, 李海军, 叶 文, 董 琪. 基于信息融合和改进UGM(1,1)模型的故障预测[J]. 系统工程与电子技术, 2013, 35(10): 2135-2140. |
[11] | 黄国强, 陆宇平, 南英, 华鹏. 多目标连续小推力深空探测器轨道全局优化[J]. Journal of Systems Engineering and Electronics, 2012, 34(8): 1652-1659. |
[12] | 邢立宁, 姚锋. 求解双层CARP优化问题的演化学习型遗传算法[J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1187-1192. |
[13] | 朱晓军, 张涛, 彭飞, 闵少松. 基于编队时间序列的舰船修理结构模型[J]. Journal of Systems Engineering and Electronics, 2012, 34(11): 2285-2289. |
[14] | 董岳, 于永利, 张柳, 李东东, 任帆. 多波次火力进攻战斗中作战单元使用任务规划[J]. Journal of Systems Engineering and Electronics, 2011, 33(8): 1778-1782. |
[15] | 王林平, 贾振元, 王福吉, 赵国凯. 不可行染色体转换方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(8): 1892-1896. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||