1 |
KWAN A, JACOBSEN H A, CHAN A, et al. Microservices in the modern software world[C]//Proc.of the 26th Annual International Conference on Computer Science and Software Engineering, 2016: 297-299.
|
2 |
VIGGIATO M, TERRA R, ROCHA H, et al. Microservices in practice: a survey study[C]//Proc.of the 6th Brazilian Workshop on Software Visualization, Evolution, and Maintenance, 2018: 189-198.
|
3 |
HASSAN S, BAHSOON R, KAZMAN R. Microservice transition and its granularity problem: a systematic mapping study[J]. arXiv preprint, 2019: arXiv: 1903.11665.
|
4 |
ALSHUQAYRAN N, ALI N, EVANS R. Towards micro service architecture recovery: an empirical study[C]//Proc.of the IEEE International Conference on Software Architecture, 2018: 4701-4709.
|
5 |
HEORHIADI V, JAMJOOM H T, RAJAGOPALAN S. Failure recovery testing framework for microservice-based applications[P]. America, 842045, 2017.
|
6 |
VILLAMIZAR M, GARCES O, OCHOA L, et al. Infrastructure cost comparison of running web applications in the cloud using AWS lambda and monolithic and microservice architectures[C]//Proc.of the 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2016: 179-182.
|
7 |
DAYA S, VAN DUY N, EATI K, et al. Microservices from theory to practice: creating applications in IBM bluemix using the microservices approach[EB/OL].[2018-06-05]. http://www.redbooks.ibm.com/abstracts/sg248275.html.
|
8 |
SHARMA D , ANANDAN R , MANIKANDAN A , et al. Building micro service for user engagement[J]. International Journal of Engineering&Technology, 2018, 7 (4): 420- 422.
|
9 |
PICCIALLI F , BENEDUSI P , AMATO F . S-InTime:a social cloud analytical service oriented system[J]. Future Generation Computer Systems, 2018, 80 (3): 229- 241.
|
10 |
REN Z, WANG W, WU G, et al. Migrating web applications from monolithic structure to microservices architecture[C]//Proc.of the 10th Asia-Pacific Symposium on Internetware, 2018: 3555-3559.
|
11 |
ZHU X . Case Ⅱ:micro platform, major innovation-WeChat-based ecosystem of innovation[M]. Singapore: Springer, 2018: 33- 52.
|
12 |
BOUZARY H , CHEN F F . Service optimal selection and composition in cloud manufacturing:a comprehensive survey[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97 (1/4): 795- 808.
|
13 |
LAHMAR F , MEZNI H . Multicloud service composition:a survey of current approaches and issues[J]. Journal of Software:Evolution and Process, 2018, 30 (10): 1- 24.
|
14 |
ZHANG Y , TAO F , LIU Y , et al. Long short-term utility aware optimal selection of manufacturing service composition towards Industrial Internet platform[J]. IEEE Trans.on Industrial Informatics, 2019, 15 (6): 3712- 3722.
doi: 10.1109/TII.2019.2892777
|
15 |
林闯, 陈莹, 黄霁崴, 等. 服务计算中服务质量的多目标优化模型与求解研究[J]. 计算机学报, 2015, 38 (10): 1907- 1923.
doi: 10.11897/SP.J.1016.2015.01907
|
|
LIN C , CHEN Y , HUANG J W , et al. A survey on models and solutions of multi-objective optimization for qos in services computing[J]. Chinese Journal of Computers, 2015, 38 (10): 1907- 1923.
doi: 10.11897/SP.J.1016.2015.01907
|
16 |
SEGHIR F , KHABABA A . A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition[J]. Journal of Intelligent Manufacturing, 2018, 29 (8): 1773- 1792.
doi: 10.1007/s10845-016-1215-0
|
17 |
HUANG J, LI S, DUAN Q, et al. QoS correlation-aware service composition for unified network-cloud service provi-sioning[C]//Proc.of the IEEE Global Communications Conference, 2016: 1-6.
|
18 |
WANG T , LI C , YUAN Y , et al. An evolutionary game approach for manufacturing service allocation management in cloud manufacturing[J]. Computers&Industrial Engineering, 2019, 133 (1): 231- 240.
|
19 |
ZHOU J , YAO X . Multi-population parallel self-adaptive differential artificial bee colony algorithm with application in large-scale service composition for cloud manufacturing[J]. Applied Soft Computing, 2017, 56 (3): 379- 397.
|
20 |
BOUZARY H , CHEN F F . A hybrid grey wolf optimizer algorithm with evolutionary operators for optimal QoS-aware service composition and optimal selection in cloud manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101 (9/12): 2771- 2784.
|
21 |
NA J, LIN K J, HUANG Z, et al. An evolutionary game approach on iot service selection for balancing device energy consumption[C]//Proc.of the 12th IEEE International Conference on e-Business Engineering, 2015: 331-338.
|
22 |
SAMANTA A, LI Y, ESPOSITO F. Battle of microservices: towards latency-optimal heuristic scheduling for edge computing[C]//Proc.of the IEEE Conference on Network Softwarization, 2019: 298-308.
|
23 |
LLOYD W, RAMESH S, CHINTHALAPATI S, et al. Serverless computing: an investigation of factors influencing microservice performance[C]//Proc.of the IEEE International Conference on Cloud Engineering, 2018: 159-169.
|
24 |
BACK T, ANDRIKOPOULOS V. Using a microbenchmark to compare function as a service solution[C]//Proc.of the European Conference on Service-Oriented and Cloud Computing, 2018: 146-160.
|
25 |
FILIP I D , POP F , SERBANESCU C , et al. Microservices scheduling model over heterogeneous cloud-edge environments as support for iot applications[J]. IEEE Internet of Things Journal, 2018, 5 (4): 2672- 2681.
doi: 10.1109/JIOT.2018.2792940
|
26 |
AHUJA R P S, NEDBAL M, SREEDHAR R. Systems and methods for deploying microservices in a networked microservices system[P]. American: 15/338-001, 2018.
|
27 |
JAMSHIDI P , PAHL C , MENDON A N C , et al. Microservices:the journey so far and challenges ahead[J]. IEEE Software, 2018, 35 (3): 24- 35.
doi: 10.1109/MS.2018.2141039
|
28 |
BALMAKHTAR M, PERSSON C J, RAJAGOPAL A. Secure cloud computing framework[P]. America: 10/243-959, 2019.
|
29 |
QU B , ZHU Y , JIAO Y , et al. A survey on multi-objective evolutionary algorithms for the solution of the environmental economic dispatch problems[J]. Swarm and Evolutionary Computation, 2018, 38, 1- 11.
doi: 10.1016/j.swevo.2017.06.002
|
30 |
DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE Trans.on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017
|
31 |
DEB K , JAIN H . An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ:solving problems with box constraints[J]. IEEE Trans.on Evolutionary Computation, 2014, 18 (4): 577- 601.
doi: 10.1109/TEVC.2013.2281535
|
32 |
ZHANG Q , LI H . MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Trans.on Evolutionary Computation, 2007, 11 (6): 712- 731.
doi: 10.1109/TEVC.2007.892759
|