系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (7): 2256-2266.doi: 10.12305/j.issn.1001-506X.2025.07.19

• 系统工程 • 上一篇    

融合时空散列的三维RRT*多编队航路规划

郑凯文1,2, 杜承泽1,2,*, 赵兴芳1, 逄晓凡1   

  1. 1. 中国石油大学(华东)计算机科学与技术学院, 山东 青岛 266580
    2. 青岛市油气物联网与人工智能技术工程研究中心, 山东 青岛 266580
  • 收稿日期:2024-06-04 出版日期:2025-07-16 发布日期:2025-07-22
  • 通讯作者: 杜承泽
  • 作者简介:郑凯文 (2000—), 男, 硕士研究生, 主要研究方向为智能信息处理与数据工程、无人机路径规划
    杜承泽 (1996—), 男, 博士研究生, 主要研究方向为无人机路径规划、集输管网产量计算
    赵兴芳 (2000—), 女, 硕士研究生, 主要研究方向为智能信息处理
    逄晓凡 (2000—), 男, 硕士研究生, 主要研究方向为智能数据处理与数据工程、计算机视觉处理
  • 基金资助:
    山东省自然科学基金(ZR2020MF136);青岛市自然科学基金(23-2-1-162-zyyd-jch)

Integrating spatio-temporal hash in three-dimensional RRT* multi-formation route planning

Kaiwen ZHENG1,2, Chengze DU1,2,*, Xingfang ZHAO1, Xiaofan PANG1   

  1. 1. College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
    2. Qingdao Oil and Gas Internet of Things and Artificial Intelligence Technology Engineering Research Center, Qingdao 266580, China
  • Received:2024-06-04 Online:2025-07-16 Published:2025-07-22
  • Contact: Chengze DU

摘要:

针对多编队时空路径生成研究的空白, 提出一种融合时空散列思想的无人机多编队航路规划方法。引入第3代安全散列算法对航路点时空信息进行散列计算和线性映射, 得到时空航路点和编队飞行区域。使用时空点面信息优化有偏采样, 解决多编队采样集中和无效路径过深问题。设计基于航路点偏置和时空平滑优化的三维增强型快速扩展随机树多编队航路规划算法, 以时空差异航路点为偏置目标, 结合人工势场法与时空约束条件优化节点搜索成本函数, 得到时空最佳差异路径。结果表明, 所提方法在规划用时和节点数上分别减少了53.33%和17.53%, 多编队路径数据验证了该方法具备时空差异生成能力。

关键词: 时空散列思想, 无人机多编队航路规划, 散列计算, 增强型快速扩展随机树, 时空约束域

Abstract:

Addressing the research gap in spatio-temporal path generation for multi-formation, a multi-unmanned aerial vehicle(UAV) formation route planning method is proposed integrating spatio-temporal hash concept. The third-generation secure hash algorithm is employed to process spatio-temporal waypoint information through hash computation and linear mapping, deriving spatio-temporal navigation points and formation flight regions. The methodology optimizes biased sampling using spatio-temporal point-surface information, effectively resolving issues of sampling concentration and excessive invalid path depth in multi-formation. A three-dimensional enhanced fastly-exploring random tree multi formation route planning algorithm based on waypoint offset and spatio-temporal smooth optimization is designed, with spatio-temporal difference waypoints as the offset target. By integrating artificial potential field methods with spatio-temporal constraints to optimize the node search cost function, the algorithm achieves spatio-temporally optimal differentiated paths. Experimental results demonstrate that the proposed method reduces planning time and node count by 53.33% and 17.53% respectively, with multi-formation path data verifying its spatio-temporal differentiation capability.

Key words: spatio-temporal hash concept, multi-unmanned aerial vehicle(UAV) formation route planning, hash computation, enhanced rapidly-exploring random tree (RRT), spatio-temporal constraint domain

中图分类号: