16 |
POTDAR A M , NARAYAN D G , KENGOND S , et al. Perfor-mance evaluation of docker container and virtual machine[J]. Procedia Computer Science, 2020, 171, 1419- 1428.
doi: 10.1016/j.procs.2020.04.152
|
17 |
AHMAD I , AIFAILAKAWI M G , AIMUTAWA A , et al. Container scheduling techniques: a survey and assessment[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34 (7): 3934- 3947.
doi: 10.1016/j.jksuci.2021.03.002
|
18 |
OUYANG Y , LINZ J Q , FENGZ T , et al. Intent-driven CoX resource management for space-terrestrial networks[J]. IEEE Wireless Communications, 2023,
doi: 10.1109/MWC.018.2200600
|
19 |
Mi X R , YANG C G , SONG Y B , et al. Matching game for intelligent resource management in integrated satellite-terrestrial networks[J]. IEEE Wireless Communications, 2022, 29 (6): 88- 94.
doi: 10.1109/MWC.009.2100555
|
20 |
KAEWKASI C, CHUENMUNEEWONG K. Improvement of container scheduling for docker using ant colony optimization[C]// Proc. of the 9th International Conference on Knowledge and Smart Technology, 2017: 254-259.
|
21 |
MENOUER T . KCSS: Kubernetes container scheduling strategy[J]. The Journal of Supercomputing, 2021, 77 (5): 4267- 4293.
doi: 10.1007/s11227-020-03427-3
|
22 |
李铭轩, 曹畅, 唐雄燕, 等. 基于可编程网络的UPF边缘调度机制研究[J]. 数据与计算发展前沿, 2022, 4 (2): 74- 86.
|
|
LI M X , CAO C , TANG X Y , et al. Research on edge scheduling mechanism of UPF based on programmable network[J]. Frontiers of Data & Computing, 2022, 4 (2): 74- 86.
|
23 |
刘曦. 数据中心网络SONiC白盒技术的发展趋势[J]. 通信世界, 2019, (33): 42- 43.
|
|
LIU X . The development trends of SONiC white box technology in data center networks[J]. Communication World, 2019, (33): 42- 43.
|
24 |
IOVⅡNO M , SCUKINS E , STYRUD J , et al. A survey of behavior trees in robotics and AI[J]. Robotics and Autonomous Systems, 2022, 154, 104096.
|
25 |
COLLEDANCHISE M. Behavior trees in robotics[D]. Stockholm: KTH Royal Institute of Technology, 2017.
|
26 |
PERGER A , GAMPER P , WITZMANN R . Behavior trees for smart grid control[J]. IFAC-PapersOnLine, 2022, 55 (9): 122- 127.
|
27 |
MARZINOTTO A, COLLEDANCHISE M, SMITH C, et al. Towards a unified behavior trees framework for robot control[C]// Proc. of the IEEE International Conference on Robotics and Automation, 2014: 5420-5427.
|
28 |
ROVIDA F, GROSSMANN B, KRUGER V. Extended beha-vior trees for quick definition of flexible robotic tasks[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017: 6793-6800.
|
29 |
BIGGAR O , ZAMANI M , SHAMES I . An expressiveness hierarchy of behavior trees and related architectures[J]. IEEE Robotics and Automation Letters, 2021, 6 (3): 5397- 5404.
|
30 |
COLLEDANCHISE M, MARZINOTTO A, DIMAROGONAS D V, et al. The advantages of using behavior trees in mult-robot systems[C]//Proc. of the 47th International Symposium on Robotics, 2016.
|
31 |
STYRUD J, IOVINO M, NORRLOF M, et al. Combining planning and learning of behavior trees for robotic assembly[C]//Proc. of the International Conference on Robotics and Automation, 2022: 11511-11517.
|
32 |
WU R C, KORTIK S, SANTOS C H. Automated behavior tree error recovery framework for robotic systems[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2021: 6898-6904.
|
33 |
CAI Z X, LI M L, HUANG W R, et al. BT expansion: a sound and complete algorithm for behavior planning of intelligent robots with behavior trees[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2021.
|
1 |
POP M D, PANDEY J, RAMASAMY V. Future networks 2030: challenges in intelligent transportation systems[C]//Proc. of the 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 2020: 898-902.
|
2 |
BONATI L , POLESE M , D'ORO S , et al. Open, programmable, and virtualized 5G networks: state-of-the-art and the road ahead[J]. Computer Networks, 2020, 182, 107516.
doi: 10.1016/j.comnet.2020.107516
|
3 |
张成林, 宋玲玲. 面向未来网络的白盒交换机体系综述[J]. 信息技术与网络安全, 2022, 41 (3): 2- 8.
|
|
ZHANG C L , SONG L L . A review on architecture of white box switches for future networks[J]. Information Technology & Network Security, 2022, 41 (3): 2- 8.
|
4 |
BOSSHART P , DALY D , GIBB G , et al. P4: programming protocol-independent packet processors[J]. ACM SIGCOMM Computer Communication Review, 2014, 44 (3): 87- 95.
doi: 10.1145/2656877.2656890
|
5 |
Open Compute Project. Switch abstraction interface(SAI): a reference switch abstraction interface for OCP[EB/OL]. [2023-07-04]. https://www.opencompute.org/.
|
6 |
Open Compute Project. SONiC: software for open net-working in the cloud website[EB/OL]. [2023-07-04]. https://github.com/sonic-net/SONiC.
|
7 |
Open Compute Project. Open network linux: a reference network operating system for OCP[EB/OL]. [2023-07-04]. http://opennetlinux.org/.
|
8 |
ALAM I , SHARIF K , LI F , et al. A survey of network virtualization techniques for Internet of things using SDN and NFV[J]. ACM Computing Surveys, 2020, 53 (2): 1- 40.
|
9 |
SHEN X M , GAO J , WU W , et al. Holistic network virtualization and pervasive network intelligence for 6G[J]. IEEE Communications Surveys & Tutorials, 2021, 24 (1): 1- 30.
|
10 |
ZHANG L L, YANG C G, OUYANG Y, et al. ISFC: intent-driven service function chaining for satellite networks[C]//Proc. of the 27th Asia Pacific Conference on Communications, 2022: 544-549.
|
11 |
张露露, 杨春刚, 王栋, 等. 意图驱动的云网融合按需编排[J]. 电信科学, 2022, 38 (10): 107- 119.
|
|
ZHANG L L , YANG C G , WANG D , et al. Intent-driven cloud-network convergence on-demand orchestration[J]. Telecommunications Science, 2022, 38 (10): 107- 119.
|
12 |
LONG X M, LIU B H, JIANG F, et al. FPGA virtualization deployment based on docker container technology[C]//Proc. of the 5th International Conference on Mechanical, Control and Computer Engineering, 2020: 473-476.
|
13 |
SIDDIQUI T, SIDDIQUI S A, KHAN N A. Comprehensive analysis of container technology[C]//Proc. of the 4th International Conference on Information Systems and Computer Networks, 2019: 218-223.
|
14 |
MUNERMAN V, MUNERMAN D. Realization of distributed data processing on the basis of container technology[C]//Proc. of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2019: 1740-1744.
|
15 |
MI X R , YANG C G , SONG Y B , et al. A distributed matching game for exploring resource allocation in satellite networks[J]. Peer-to-Peer Networking and Applications, 2021, 14 (5): 3360- 3371.
doi: 10.1007/s12083-021-01158-7
|