1 |
YE H , MENG Y Z . An observer-based adaptive fault-tolerant control for hypersonic vehicle with unexpected centroid shift and input saturation[J]. ISA Transactions, 2022, 130, 51- 62.
doi: 10.1016/j.isatra.2022.04.004
|
2 |
黄浩, 丰志伟, 葛建全, 等. 高超声速飞行器低可探测性滑翔弹道优化方法[J]. 国防科技大学学报, 2019, 41 (5): 16- 23.
|
|
HUANG H , FENG Z W , GE J Q , et al. Low-observable glide trajectory optimization method for hypersonic vehicle[J]. Journal of National University of Defense Technology, 2019, 41 (5): 16- 23.
|
3 |
路遥. 一种非仿射高超声速飞行器输出反馈控制方法[J]. 自动化学报, 2022, 48 (6): 1530- 1542.
|
|
LU Y . A method of output feedback control for non-affine hypersonic vehicles[J]. Acta Automatica Sinica, 2022, 48 (6): 1530- 1542.
|
4 |
BAO W M . Present situation and development tendency of aerospace control techniques[J]. Acta Automatica Sinica, 2013, 39 (6): 697- 702.
|
5 |
GROVES K P, SIGTHORSSON D O, SERRANI A. Reference command tracking for a linearized model of an air-breathing hypersonic vehicle[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005: 2901-2914.
|
6 |
KUIPERS M, IOANNOU P, FIDAN B, et al. Robust adaptive multiple model controller design for an airbreathing hypersonic vehicle model[C]//Proc. of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2008: 4674-4694.
|
7 |
LEI Y, CAO C Y, HOVAKIMYAN N, et al. Design of an L1 adaptive controller for air-breathing hypersonic vehicle model in the presence of unmodeled dynamics[C]//Proc. of the AIAA Guidance, Navigation and Control Conference, 2007: 2019-2032.
|
8 |
PARKER J, SERRANI A, YURKOVICH S, et al. Approximate feedback linearization of an air-breathing hypersonic vehicle[C]//Proc. of the AIAA Guidance, Navigation, and Control Confe-rence, 2006: 3633-3648.
|
9 |
REHMAN O U, FIDAN B, PETERSEN I R. Robust minimax optimal control of nonlinear uncertain systems using feedback linearization with application to hypersonic flight vehicles[C]//Proc. of the IEEE Joint 48th Conference on Decision and Control and 28th Chinese Control Conference, 2009: 158-164.
|
10 |
李小兵, 赵思源, 卜祥伟, 等. 高超声速飞行器保预设性能的反演控制方法[J]. 国防科技大学学报, 2020, 42 (1): 73- 83.
|
|
LI X B , ZHAO S Y , BU X W , et al. Backstepping control method for hypersonic vehicles to guarantee prescribed performance[J]. Journal of National University of Defense Technology, 2020, 42 (1): 73- 83.
|
11 |
LI W G , ZHANG M M , DENG Y Q . Consensus-based distri-buted secondary frequency control method for AC microgrid using ADRC technique[J]. Energies, 2022, 15 (9): 3184.
doi: 10.3390/en15093184
|
12 |
DOOSTDAR F , MOJALLALI H . An ADRC-based backstepping control design for a class of fractional-order systems[J]. ISA Transactions, 2022, 121, 140- 146.
doi: 10.1016/j.isatra.2021.03.033
|
13 |
HUANG L J , PEI H L . Design of yaw controller for a small unmanned helicopter based on improved ADRC[J]. Guidance, Navigation and Control, 2022, 1 (4): 978- 981.
|
14 |
SUN M W, CHEN Z Q, YUAN Z Z. A practical solution to some problems in flight control[C]//Proc. of the IEEE Confe-rence on Decision & Control, 2009: 1482-1487.
|
15 |
GAO H T , CHEN Z G , SUN M W , et al. An efficient fast altitude control for hypersonic vehicle[J]. Control Engineering Practice, 2020, 100, 104426.
doi: 10.1016/j.conengprac.2020.104426
|
16 |
叶孝璐, 俞立, 张文安, 等. 基于串级ADRC的四旋翼飞行器悬停控制[J]. 中南大学学报: 自然科学版, 2017, 48 (8): 2079- 2087.
|
|
YE X L , YU L , ZHANG W A , et al. Cascade ADRC-based hover control for quadrotor air vehicles[J]. Journal of Central South University: Science and Technology, 2017, 48 (8): 2079- 2087.
|
17 |
许锐, 郭玉英. 基于双闭环ADRC的四旋翼飞行器轨迹跟踪控制[J]. 飞行力学, 2022, 40 (5): 59- 65.
|
|
XU R , GUO Y Y . Trajectory tracking control of quadrotor UAV based on double closed-loop ADRC[J]. Flight Dynamics, 2022, 40 (5): 59- 65.
|
18 |
YANG X H , LYU W J , HU C F , et al. Tube-model predictive control based on sum of squares for hypersonic vehicle with state-dependent input constraints[J]. Transactions of the Institute of Measurement and Control, 2022, 44 (5): 1000- 1013.
doi: 10.1177/01423312211046504
|
19 |
WANG F . Robust adaptive control of hypersonic vehicle considering inlet unstart[J]. Journal of Systems Engineering and Electronics, 2022, 33 (1): 188- 196.
doi: 10.23919/JSEE.2022.000019
|
20 |
FLIESS M , LEVINE J , MARTIN P . Flatness and defect of non-linear systems: introductory theory and examples[J]. International Journal of Control, 1995, 61 (6): 1327- 1361.
doi: 10.1080/00207179508921959
|
21 |
CHAMSEDDINE A , ZHANG Y , RABBATH C . Flatness-based trajectory planning/replanning for a quadrotor unmanned aerial vehicle[J]. Aerospace and Electronic Systems, 2012, 48 (4): 2832- 2848.
doi: 10.1109/TAES.2012.6324664
|
22 |
RIGATOS G , ABBASZADEH M , POMARES J . Flatness-based disturbance observer for exoskeleton robots under time-delayed contact forces[J]. Advanced Control for Applications: Engineering and Industrial Systems, 2022, 4 (2): e100.
doi: 10.1002/adc2.100
|
23 |
庄宇飞. 带有非完整约束的欠驱动航天器控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
|
ZHUANG Y F. Control of underactuated spacecraft with nonholonomic constraints[D]. Harbin: Harbin Institute of Technology, 2012.
|
24 |
蔡伟伟, 杨乐平, 刘新建, 等. 基于微分平坦的高超声速滑翔飞行器轨迹规划[J]. 国防科技大学学报, 2014, 36 (2): 61- 67.
|
|
CAI W W , YANG L P , LIU X J . Differential flatness based trajectory planning for hypersonic glide vehicle[J]. Journal of National University of Defense Technology, 2014, 36 (2): 61- 67.
|
25 |
WANG Q , STENGEL R . Robust nonlinear control of a hypersonic aircraft[J]. Journal of Guidance, Control, and Dynamics, 2000, 23 (4): 577- 585.
|
26 |
FLIESS M, LEVINE J, MARTIN P, et al. Controlling nonli-near systems by flatness[M]//ROSENTHAL J, WANG X A. System and Control in the 21st century. Boston: Springer Verlag, 1997.
|
27 |
FAHROO F , ROSS I M . Direct trajectory optimization by a Chebyshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2002, 25 (1): 160- 166.
doi: 10.2514/2.4862
|
28 |
TIAN G, GAO Z Q. Frequency response analysis of active disturbance rejection based control system[C]//Proc. of the IEEE 16th International Conference on Control Applications, 2007: 1595-1599.
|
29 |
WANG Y X, CHAO T, WANG S Y, et al. Trajectory tracking control based on differential flatness[C]//Proc. of the 35th Chinese Control Conference, 2016: 10828-10832.
|
30 |
WANG Y X, CHAO T, WANG S Y, et al. Trajectory tracking control based on improved particle swarm optimization[C]//Proc. of the IEEE Chinese Guidance, Navigation and Control Conference, 2016: 2244-2249.
|