系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (7): 2246-2255.doi: 10.12305/j.issn.1001-506X.2025.07.18

• 系统工程 • 上一篇    

基于指针网络架构的多星协同成像任务规划方法

朱运豆1,2, 孙海权1,2,*, 胡笑旋1,2   

  1. 1. 合肥工业大学管理学院, 安徽 合肥 230009
    2. 过程优化与智能决策教育部重点实验室, 安徽 合肥 230009
  • 收稿日期:2024-07-11 出版日期:2025-07-16 发布日期:2025-07-22
  • 通讯作者: 孙海权
  • 作者简介:朱运豆 (1999—), 男, 硕士研究生, 主要研究方向为卫星任务规划
    孙海权 (1993—), 男, 讲师, 博士, 主要研究方向为卫星资源优化调度、智能任务规划
    胡笑旋 (1978—), 男, 教授, 博士, 主要研究方向为空间信息网络任务规划与资源调度
  • 基金资助:
    国家自然科学基金(72071064);中央高校基本科研业务费专项资金;安徽省自然科学基金(2408085QG221)

Multi-satellite cooperative imaging task planning method based on pointer network architecture

Yundou ZHU1,2, Haiquan SUN1,2,*, Xiaoxuan HU1,2   

  1. 1. School of Management, Hefei University of Technology, Hefei 230009, China
    2. Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China
  • Received:2024-07-11 Online:2025-07-16 Published:2025-07-22
  • Contact: Haiquan SUN

摘要:

随着卫星资源数量增加, 用户成像需求也在急剧扩大, 亟需加强多星协同成像任务规划研究, 提升卫星服务能力。本文基于深度强化学习对多星协同成像任务规划问题开展研究。首先, 在满足任务需求、卫星能力、时空约束基础上, 建立多星协同成像任务规划数学模型。然后, 设计一种基于指针网络的卫星任务规划算法, 利用指针网络机制对输入序列进行优化选择, 并通过Mask向量表征各类约束。最后, 仿真结果表明算法获得的平均任务收益比传统启发式算法和指针网络模型至少提高1.71%, 对于不同任务规模实例训练完成的算法, 其平均任务收益差最大不超过0.28%, 证明了算法的有效性和适用性。

关键词: 多星协同成像, 任务规划, 深度强化学习, 指针网络

Abstract:

With the increase in the number of satellite resources, user imaging demands are also rapidly expanding. There is an urgent need to strengthen research on multi-satellite coordinated imaging task planning to enhance satellite service capabilities. This paper conducts research on multi-satellite coordinated imaging task planning based on deep reinforcement learning. Firstly, a mathematical model for multi-satellite cooperative imaging task planning is established, taking into account task requirements, satellite capabilities, and spatiotemporal constraints. Then, a satellite task planning algorithm based on pointer network is designed. This algorithm employs the pointer network mechanism to optimize the selection of input sequences and utilizes a Mask vector to represent various constraint conditions. Finally, simulation results show that the algorithm achieves an average task benefit improvement of at least 1.71% compared to traditional heuristic algorithms and pointer network model. The average task benefit difference for algorithms trained on instances of different task scales is no more than 0.28%, demonstrating the effectiveness and applicability of the algorithm.

Key words: multi-satellite cooperative imaging, task planning, deep reinforcement learning, pointer network

中图分类号: