1 |
GUO H D , MICHAEL F G , ALESSANDRO A . Remote sensing satellites for digital earth[M]. Manual of Digital Earth, Singapore: springer, 2020.
|
2 |
李阳阳, 罗俊仁, 张万鹏, 等. 多星协同观测遗传-演进双层任务规划算法[J]. 系统工程与电子技术, 2024, 46 (6): 2044- 2053.
doi: 10.12305/j.issn.1001-506X.2024.06.22
|
|
LI Y Y , LUO J R , ZHANG W P , et al. Genetic-evolutionary bi-level mission planning algorithm for multi-satellite cooperative observation[J]. Systems Engineering and Electronics, 2024, 46 (6): 2044- 2053.
doi: 10.12305/j.issn.1001-506X.2024.06.22
|
3 |
XU Y G , LIU X L , HE R J , et al. Multi-satellite scheduling framework and algorithm for very large area observation[J]. Acta Astronautica, 2020, 167, 93- 107.
|
4 |
LONG J , WU S M , HAN X D , et al. Autonomous task planning method for multi-satellite system based on a hybrid genetic algorithm[J]. Aerospace, 2023, 10 (1): 70.
|
5 |
PENG G S , SONG G P , XING L N , et al. An exact algorithm for agile earth observation satellite scheduling with time-dependent profits[J]. Computers & Operations Research, 2020, 120, 104946.
|
6 |
WANG J J , DEMEULEMEESTER E , QIU D S . A pure proactive scheduling algorithm for multiple earth observation satellites under uncertainties of clouds[J]. Computers & Operations Research, 2016, 74, 1- 13.
|
7 |
HU X X , ZHU W M , AN B , et al. A branch and price algorithm for EOS constellation imaging and downloading integrated scheduling problem[J]. Computers & Operations Research, 2019, 104, 74- 89.
|
8 |
KANDEPI R , SAINI H , GEORGE R K , et al. Agile earth observation satellite constellations scheduling for large area target imaging using heuristic search[J]. Acta Astronautica, 2024, 219, 670- 677.
|
9 |
周美玉, 印小冬, 刘聪, 等. 多星任务规划模型及算法[J]. 指挥信息系统与技术, 2023, 14 (3): 57- 64.
|
|
ZHOU M Y , YIN X D , LIU C , et al. Multi-satellite task scheduling model and algorithm[J]. Command Information System and Technology, 2023, 14 (3): 57- 64.
|
10 |
ZHIBO E , SHI R H , GAN L , et al. Multi-satellites imaging scheduling using individual reconfiguration based integer coding genetic algorithm[J]. Acta Astronautica, 2021, 178, 645- 657.
|
11 |
HAN C , GU Y , WU G H , et al. Simulated annealing-based heuristic for multiple agile satellites scheduling under cloud coverage uncertainty[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2022, 53 (5): 2863- 2874.
|
12 |
CHEN X Y , REINELT G , DAI G M , et al. Priority-based and conflict-avoidance heuristics for multi-satellite scheduling[J]. Applied Soft Computing, 2018, 69, 177- 191.
|
13 |
ZHAO X X , WANG Z K , ZHENG G . Two-phase neural combinatorial optimization with reinforcement learning for agile satellite scheduling[J]. Journal of Aerospace Information Systems, 2020, 17 (7): 346- 357.
|
14 |
WANG H N , LIU N , ZHANG Y Y , et al. Deep reinforcement learning: a survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21 (12): 1726- 1744.
|
15 |
BELLO I, PHAM H, LE Q V, et al. Neural combinatorial optimization with reinforcement learning[EB/OL]. [2024-06-11]. https://doiorg/10.48550/arXiv.1611. 09940.
|
16 |
NAZARI M, OROOJLOOY A, SNYDER L, et al. Reinforcement learning for solving the vehicle routing problem[C]//Proc. of the 32nd International Conference on Information Processing Systems, 2018.
|
17 |
WANG X W , WU G H , XING L N , et al. Agile earth observation satellite scheduling over 20 years: formulations, methods, and future directions[J]. IEEE Systems Journal, 2020, 15 (3): 3881- 3892.
|
18 |
LIU S K , YANG J . A satellite task planning algorithm based on a symmetric recurrent neural network[J]. Symmetry, 2019, 11 (11): 1373.
|
19 |
彭双, 伍江江, 陈浩, 等. 基于注意力神经网络的对地观测卫星星上自主任务规划方法[J]. 计算机科学, 2022, 49 (7): 242- 247.
|
|
PENG S , WU J J , CHEN H , et al. Satellite onboard observation task planning based on attention neural network[J]. Computer Science, 2022, 49 (7): 242- 247.
|
20 |
CHEN J W , CHEN M , WEN J , et al. A heuristic construction neural network method for the time-dependent agile earth observation satellite scheduling problem[J]. Mathematics, 2022, 10 (19): 3498.
|
21 |
WU J , SONG B , ZHANG G T , et al. A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time[J]. Computers & Industrial Engineering, 2022, 174, 108823.
|
22 |
WANG X , WU J , SHI Z , et al. Deep reinforcement learning-based autonomous mission planning method for high and low orbit multiple agile Earth observing satellites[J]. Advances in Space Research, 2022, 70 (11): 3478- 3493.
|
23 |
LI P Y , WANG H Q , ZHANG Y X , et al. Mission planning for distributed multiple agile Earth observing satellites by attention-based deep reinforcement learning method[J]. Advances in Space Research, 2024, 74 (5): 2388- 2404.
|
24 |
WEI L N , CHEN Y N , CHEN M , et al. Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem[J]. Applied Soft Computing, 2021, 110, 107607.
|
25 |
马一凡, 赵凡宇, 王鑫, 等. 基于改进指针网络的卫星对地观测任务规划方法[J]. 浙江大学学报(工学版), 2021, 55 (2): 395- 401.
|
|
MA Y F , ZHAO F Y , WANG X , et al. Satellite earth observation task planning method based on improved pointer networks[J]. Journal of ZheJiang University (Engineering Science), 2021, 55 (2): 395- 401.
|
26 |
PETERS J , SCHAAL S . Natural Actor-Critic[J]. Neurocomputing, 2008, 71 (7/9): 1180- 1190.
|
27 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2024-06-11]. https://doi.org/10.48550/arXiv.2423.13370.
|
28 |
ZHANG J W , XING L N . An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem[J]. Computers & Operations Research, 2022, 139, 105626.
|
29 |
丁祎男, 刘羽白, 王淑一, 等. 一种多目标变邻域模拟退火算法及成像星座任务规划方法[J]. 宇航学报, 2022, 43 (12): 1686- 1695.
|
|
DING Y N , LIU Y B , WANG S Y , et al. A multi objective variable neighborhood simulated annealing algorithm and imaging constellation task planning method[J]. Journal of Astronautics, 2022, 43 (12): 1686- 1695.
|
30 |
ZHAO Y B , DU B , LI S . Agile satellite mission planning via task clustering and double-layer tabu algorithm[J]. Computer Modeling in Engineering & Sciences, 2020, 122 (1): 235- 257.
|
31 |
VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[C]//Proc. of the 29th International Conference on Neural Information Processing Systems, 2015.
|