系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3531-3542.doi: 10.12305/j.issn.1001-506X.2025.11.02

• 电子技术 • 上一篇    

纵波EMAT优化与非接触管道液位监测

师英杰1,2(), 周东东1, 雷泰然1, 黄三傲3, 徐科1,*   

  1. 1. 北京科技大学钢铁共性技术协同创新中心,北京 100083
    2. 中国科学院声学研究所水下航行器实验室,北京 100190
    3. 安徽工业大学电气与信息工程学院,安徽 马鞍山 243032
  • 收稿日期:2025-02-22 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 徐科 E-mail:13488830977@163.com
  • 作者简介:师英杰(1992—),男,助理研究员,博士研究生,主要研究方向为电磁超声、无损检测、水声阵列信号处理
    周东东(1986—),男,副研究员,博士,主要研究方向为机器视觉、多光谱技术、温度检测、缺陷检测、深度学习
    雷泰然(2000—),男,硕士研究生,主要研究方向为电磁超声、无损检测
    黄三傲(1982—),男,教授,博士,主要研究方向为智能检测技术、专用检测仪器开发、工业过程自动化
  • 基金资助:
    国家自然科学基金(52174352)资助课题

Optimized longitudinal wave EMAT for non-contact pipeline liquid level monitoring

Yingjie SHI1,2(), Dongdong ZHOU1, Tairan LEI1, San’ao HUANG3, Ke XU1,*   

  1. 1. Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China
    2. Laboratory of Underwater Vehicle,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China
    3. School of Electrical and Information Engineering,Anhui University of Technology,Maanshan 243032
  • Received:2025-02-22 Online:2025-11-25 Published:2025-12-08
  • Contact: Ke XU E-mail:13488830977@163.com

摘要:

针对在高温高压核电站冷却水管道中,传统的液位监测方法存在接触、侵入的问题,首先,设计一种类 Halbach 结构的纵波电磁超声换能器,通过优化磁路实现信号强度提升约 11.0 dB,采用跑道线圈设计保证声束的分散性,便于减弱回波的影响。然后,提出一种用于液位监测的多传感器部署方案,该方案在管壁激发4 MHz 的3周期测厚脉冲波,根据回波间隔时间计算得到管壁共振频率,激发与壁厚对应的共振波基频及其倍频信号。最后,对回波信号使用经验模态分解去噪,提取归一化包络信息,并将其输入卷积神经网络,以对多传感器的固?气和固?液界面进行分类,通过多传感器的界面判定结果能够有效确定液位高度的区间。实验结果表明,该方法可实现在金属管道内对倾斜及波动液位的稳定测量,展现了较强的工业应用价值。

关键词: 电磁超声, 液位测量, 二次激励共振法, 卷积神经网络

Abstract:

In high-temperature and high-pressure nuclear power plant cooling water pipelines, traditional liquid level monitoring methods have issues of contact and intrusion. Firstly, a longitudinal wave electromagnetic asonic transducer with a Halbach-like structure is designed. By optimizing the magnetic circuit, the signal strength is enhanced by approximately 11.0 dB. A runway coil design is employed to ensure the divergence of the acoustic beam, facilitating the reduction of echo interference. Secondly, a multi-sensor deployment strategy for liquid level monitoring is proposed. In this scheme, 4 MHz three-cycle thickness measurement pulses are excited on the pipe wall, and the wall resonance frequency is determined from the time interval between echoes. The corresponding fundamental and harmonic resonance waves are then generated according to the wall thickness. Finally, empirical mode decomposition is employed to denoise the echo signals, and normalized envelope features are extracted and fed into a convolutional neural network to classify solid–gas and solid–liquid interfaces across multi-sensor. The range of liquid level height can be effectively determined through the interface judgment results of multi-sensor. Experimental results demonstrate that the proposed method provides stable measurements of inclined and fluctuating liquid levels within metallic pipelines, highlighting its strong potential for industrial applications.

Key words: electromagnetic acoustic transducer (EMAT), water level measurement, secondary excitation resonance method, convolutional neural network (CNN)

中图分类号: