1 |
吕昕梦, 周俊. 红外成像系统MRTD测试方法研究[J]. 光电技术应用, 2021, 36 (6): 77- 80.
|
|
LYU X M , ZHOU J . Research on MRTD testing method of infrared imaging system[J]. Electro-Optic Technology, 2021, 36 (6): 77- 80.
|
2 |
范心田, 卢振武, 孙强. 红外成像系统中MRTD测试方法的研究[J]. 红外与激光工程, 2004, 33 (5): 445- 448.
doi: 10.3969/j.issn.1007-2276.2004.05.002
|
|
FAN X T , LU Z W , SUN Q . Measurement method for MRTD of infrared imaging system[J]. Infrared and Laser Engineering, 2004, 33 (5): 445- 448.
doi: 10.3969/j.issn.1007-2276.2004.05.002
|
3 |
BURROUGHS E, MOE G O, LESHER G W, et al. Automated MRTD using boundary contour system, custom feature extractors and fuzzy ARTMAP[C]//Proc. of the Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, 1995, 2470: 274-287.
|
4 |
孙军月. 应用神经网络智能测量热成像系统MRTD[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2006.
|
|
SUN J Y. Intelligent MRTD testing for thermallmaging system using ANN[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2006.
|
5 |
SUN J Y, MA D. Intelligent MRTD testing for thermal imaging system using ANN[C]//Proc. of the ICO20: Remote Sensing and Infrared Devices and Systems, 2006, 6031: 260-266.
|
6 |
王连振, 吴晗平, 李旭辉, 等. 红外成像系统综合性能评价方法研究[J]. 红外技术, 2015, 37 (1): 57- 62.
|
|
WANG L Z , WU H P , LI X H , et al. Research on the methods of IR imaging system comprehensive performance evaluation[J]. Infrared Technology, 2015, 37 (1): 57- 62.
|
7 |
LIU F Y , LIU J , WANG L B . Deep learning and infrared thermography for asphalt pavement crack severity classification[J]. Automation in Construction, 2022, 140, 104383.
doi: 10.1016/j.autcon.2022.104383
|
8 |
HANG R L , LI Z , LIU Q S , et al. Hyperspectral image classification with attention-aided CNNs[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (3): 2281- 2293.
doi: 10.1109/TGRS.2020.3007921
|
9 |
AHMAD M , SHABBIR S , RAZA R A , et al. Artifacts of different dimension reduction methods on hybrid CNN feature hierarchy for hyperspectral image classification[J]. Optik-International Journal for Light and Electron Optics, 2021, 246 (1): 167757.
|
10 |
ARNOUS F I , NARAYANAN R M , LI B C . Application of multidomain sensor image fusion and training data augmentation for enhanced CNN image classification[J]. Journal of Electronic Imaging, 2022, 31 (1): 013014.
|
11 |
LIU F C , XU H , QI M , et al. Depth-wise separable convolution attention module for garbage image classification[J]. Sustainability, 2022, 14 (5): 3099.
doi: 10.3390/su14053099
|
12 |
MELGANI F , BRUZZONE L . Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42 (8): 1778- 1790.
doi: 10.1109/TGRS.2004.831865
|
13 |
KHAIRANDISH M O , SHARMA M , JAIN V , et al. A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images[J]. Innovation and Research in Biomedical Engineering, 2022, 43 (4): 290- 299.
|
14 |
REDDY A S . Extensive content feature based image classification and retrieval using SVM[J]. CVR Journal of Science and Technology, 2023, 24 (1): 53- 58.
|
15 |
KEERTHANA D , VENUGOPAL V , NATH M K , et al. Hybrid convolutional neural networks with SVM classifier for classification of skin cancer[J]. Biomedical Engineering Advances, 2023, 5, 100069.
|
16 |
ARI A . Multipath feature fusion for hyperspectral image classification based on hybrid 3D/2D CNN and squeeze-excitation network[J]. Earth Science Informatics, 2023, 16 (1): 175- 191.
|
17 |
CHEN G M , CHEN Q , LONG S , et al. Quantum convolutional neural network for image classification[J]. Pattern Analysis and Applications, 2023, 26 (2): 655- 667.
|
18 |
LI B H , HOU Y T , CHE W X . Data augmentation approaches in natural language processing: a survey[J]. AI Open, 2021, 3, 71- 90.
|
19 |
POLSON N G , SCOTT S L . Data augmentation for support vector machines[J]. Bayesian Analysis, 2011, 6 (1): 1- 23.
|
20 |
田留德, 刘朝晖, 赵建科, 等. 红外热像仪MRTD测试方法研究[J]. 红外技术, 2015, 37 (5): 368- 373.
|
|
TIAN L D , LIU C H , ZHAO J K , et al. Measurement method for MRTD of infrared imaging system[J]. Infrared Technology, 2015, 37 (5): 368- 373.
|
21 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
|
22 |
GALAR M , FERNANDEZ A , BARRENECHEA E , et al. DRCW-OVO: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems[J]. Pattern Recognition, 2015, 48 (1): 28- 42.
|
23 |
KINGMA D P , BA J . Adam: a method for stochastic optimization[J]. Computer Science, 2014, 14126980.
|
24 |
SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958.
|
25 |
SALEHIN I , KANG D K . A review on Dropout regularization approaches for deep neural networks within the scholarly domain[J]. Electronics, 2023, 12 (14): 3106.
|
26 |
HU J, SHEN L, SAMUEL A. Squeeze-and-excitation networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
27 |
SARIGUL M . Performance analysis of CNN channel attention modules for image classification task[J]. Çukurova Universitesi Mühendislik Fakültesi Dergisi, 2023, 38 (1): 35- 40.
|
28 |
HSIAO T Y , CHANG Y C , CHOU H H , et al. Filter-based deep-compression with global average pooling for convolutional networks[J]. Journal of Systems Architecture, 2019, 95, 9- 18.
|
29 |
KHAN A , SOHAIL A , ZAHOORA U , et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53, 5455- 5516.
|
30 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|