1 |
张兆晨, 周光霞. 指挥信息系统技术发展趋势分析[C]//第六届中国指挥控制大会, 2018(1): 52-56.
|
|
ZHANG Z C, ZHOU G X. Analysis of technology development trend of command information[C]//Proc. of the 6th China Command and Control Conference, 2018(1): 52-56.
|
2 |
ZAVALA E. Towards adaptive monitoring services for self-adaptive software systems[C]//Proc. of the International Conference on Service Oriented Computing, 2017: 357-362.
|
3 |
DEVRIES B, CHENG B H. Run-time monitoring of self-adaptive systems to detect N-way feature interactions and their causes[C]//Proc. of the Software Engineering for Adaptive And Self Managing Systems, 2018: 94-100.
|
4 |
CHENG W, LI Q S, WANG L, et al. Handling uncertainty online for self-adaptive systems[C]//Proc. of the 5th International Conference on Soft Computing & Machine Intelligence, 2018: 135-139.
|
5 |
ZHANG H, LI Q S, WANG L, et al. Self-adaptive software changes analysis method based on "detection-recognition" mechanism(S)[C]//Proc. of the 31st International Conference on Software Engineering and Knowledge Engineering, 2019: 287-378.
|
6 |
吴俊锋, 毛杰, 丁健. 指挥信息系统一站式综合监控系统设计与实现[J]. 指挥信息系统与技术, 2013, 4 (5): 61- 66.
|
|
WU J F , MAO J , DING J . Design and implementation of one-stop unified monitoring system for command information system[J]. Command Information System and Technology, 2013, 4 (5): 61- 66.
|
7 |
张超梅, 金晓雪, 戴仔强. 复杂信息系统的故障诊断专家系统设计与实现[J]. 指挥信息系统与技术, 2013, 4 (8): 27- 32.
|
|
ZHANG C M , JIN X X , DAI Z Q . Design and realization of fault diagnosis expert system in complex information system[J]. Command Information System and Technology, 2013, 4 (8): 27- 32.
|
8 |
梁建兴, 贾奖, 唐昌建. 基于WinPcap的指控网流量监控方法研究[C]//第二届中国指挥控制大会, 2014: 600-602.
|
|
LIANG J X, JIA J, TAN C J. Research on traffic monitoring method based on WinPcap[C]//Proc. of the 2nd China Command and Control Conference, 2014: 600-602.
|
9 |
DEAN D J, NGUYEN H, GU X. UBL: unsupervised behavior learning for predicting performance anomalies in virtualized cloud systems[C]//Proc. of the International Conference on Autonomic Computing, 2012.
|
10 |
ZHANG Y C, HONG B, ZHANG M, et al. ECAD: cloud anomalies detection from an evolutionary view[C]//Proc. of the International Conference on Cloud Computing & Big Data, 2013.
|
11 |
ACOSTA J A , GONZALEZ J P , FIGUEROA V M , et al. ICA-multiclass SVM as a monitoring system of complex processes[J]. Research on Computing Science, 2014, 82 (1): 41- 52.
doi: 10.13053/rcs-82-1-4
|
12 |
SU Y, ZHANG W Z, TAO W W, et al. A network illegal access detection method based on PSO-SVM algorithm in power monitoring system[C]//Proc. of the International Conference on Cloud Computing, 2018: 450-459.
|
13 |
SUNDARAVADIVEL P , KESAVAN K , KESAVAN L , et al. Smart-log: a deep-learning based automated nutrition monitoring system in the IoT[J]. IEEE Trans.on Consumer Electronics, 2018, 64 (3): 390- 398.
doi: 10.1109/TCE.2018.2867802
|
14 |
JI C Z , LU S Q . Exploration of marine ship anomaly real-time monitoring system based on deep learning[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38 (2): 1235- 1240.
doi: 10.3233/JIFS-179485
|
15 |
唐庭龙. 支持向量机增量学习研究[D]. 杭州: 浙江工业大学, 2018.
|
|
TANG T L. Reserarch on support vector machine incremental learning[D]. Hangzhou: Zhejiang University of Technology, 2018.
|
16 |
YU H L , NI J , ZHAO J . ACOS ampling: an ant colony optimization-based under sampling method for classifying imbalanced DNA microarray data[J]. Neurocomputing, 2013, 101 (2): 309- 318.
|
17 |
ARYA I , HAMED M S , NUNO V . Cost sensitive support vector machines[J]. Neurocomputing, 2019, 343 (5): 50- 64.
|
18 |
赵小强, 张露. 基于SVM的高维不平衡数据集分类算法[J]. 南京大学学报(自然科学), 2018, 54 (2): 238- 247.
|
|
ZHAO X Q , ZHANG L . Classification algorithm of high-dimensional and imbalanced data based on support vector machine[J]. Journal of NanJing University (Natural Science), 2018, 54 (2): 238- 247.
|
19 |
黄海松, 魏建安, 康佩栋. 基于不平衡数据样本特性的新型过采样SVM分类算法[J]. 控制与决策, 2018, 33 (9): 1549- 1558.
|
|
HUANG H S , WEI J A , KANG P D . New over-sampling SVM classification algorithm based on unbalanced data sample characteristics[J]. Control and Decision, 2018, 33 (9): 1549- 1558.
|
20 |
CHENG W Y , JUANG C F . An incremental support vector machine-trained TS-type fuzzy system for online classification problems[J]. Fuzzy Sets and Systems, 2011, 163 (1): 24- 44.
doi: 10.1016/j.fss.2010.08.006
|
21 |
YANG Y L , CHE J X , LI Y Y , et al. An incremental electric load forecasting model based on support vector regression[J]. Energy, 2016, 113 (10): 796- 808.
|
22 |
YI Y , WU J S , XU W , et al. Incremental SVM based on reserved set for network intrusion detection[J]. Expert Systems With Applications, 2011, 38 (6): 7698- 7707.
doi: 10.1016/j.eswa.2010.12.141
|
23 |
CHITRAKAR R , HUANG C . Selection of candidate support vectors in incremental SVM for network intrusion detection[J]. Computers & Security, 2014, 45 (9): 231- 241.
|
24 |
LI C H , LIU K W , WANG H X , et al. The incremental learning algorithm with support vector machine based on hyperplane-distance[J]. Applied Intelligence, 2011, 34 (1): 19- 27.
|
25 |
KUBAT M, HOLTE R C, MATWIN S, et al. Learning when negative examples abound[C]//Proc. of the European Confe-rence on Machine Learning, 1997: 146-153.
|
26 |
DAVIS J, GOADRICH M. The relationship between precision-recall and ROC curves[C]//Proc. of the International Confe-rence on Machine Learning, 2006: 233-240.
|
27 |
LIN K C, CHIEN H Y. CSO-based feature selection and parameter optimization for support vector machine[C]//Proc. of the Joint Conferences on Pervasive Computing, 2009: 783-788.
|
28 |
YANG Z M, YANG Y, GANG W. Classification for imba-lanced dataset based on biased empirical feature mapping[C]//Proc. of the IEEE International Instrumentation and Measurement Technology Conference, 2012: 1645-1649.
|
29 |
KHAN M, ARIF R B, SIDDIQUE M, et al. Study and observation of the variation of accuracies of KNN, SVM, LMNN, ENN algorithms on eleven different datasets from UCI machine learning repository[C]//Proc. of the 4th International Confe-rence on Electrical Engineering and Information & Communication Technology, 2018: 124-129.
|
30 |
SUN C, YUE S H, LI Q. Clustering characteristics of UCI dataset[C]//Proc. of the 39th Chinese Control Conference, 2020: 6301-6306.
|