| 1 | LANGLEY L E. Specific emitter identification (SEI) and classical parameter fusion technology[C]//Proc.of WESCON, 1993: 377-381. | 
																													
																						| 2 | KLEIN R W, TEMPLE M A, MENDENHALL M J, et al. Sensitivity analysis of burst detection and RF fingerprinting classification performance[C]//Proc.of the IEEE International Conference on Communications, 2009. | 
																													
																						| 3 | 蔡忠伟.  基于双谱的通信辐射源个体识别[J]. 通信学报, 2007, 28 (2): 75- 79. | 
																													
																						|  | CAI Z W .  Study of transmitter individual identification based on bispectra[J]. Journal on Communications, 2007, 28 (2): 75- 79. | 
																													
																						| 4 | ZHANG X D ,  SHI Y ,  BAO Z .  A new feature vector using selected bispectra for signal classification with application in radar target recognition[J]. IEEE Trans.on Signal Processing, 2001, 49 (9): 1875- 1885. doi: 10.1109/78.942617
 | 
																													
																						| 5 | 任东方, 张涛, 韩洁, 等.  基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017, 38 (12): 160- 168. doi: 10.11959/j.issn.1000-436x.2017299
 | 
																													
																						|  | REN D F ,  ZHANG T ,  HAN J , et al.  Specific emitter identification based on ITD and texture analysis[J]. Journal on Communications, 2017, 38 (12): 160- 168. doi: 10.11959/j.issn.1000-436x.2017299
 | 
																													
																						| 6 | WONG L J. On the use of convolutional neural networks for specific emitter identification[D]. Virginia: Virginia Polytechnic Institute and State University, 2018. | 
																													
																						| 7 | WU Q ,  FERES C ,  KUZMENKO D , et al.  Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54 (24): 1405- 1407. doi: 10.1049/el.2018.6404
 | 
																													
																						| 8 | PAN Y W ,  YANG S H ,  PENG H , et al.  Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434. doi: 10.1109/ACCESS.2019.2913759
 | 
																													
																						| 9 | 黄健航, 雷迎科.  基于深度学习的通信辐射源指纹特征提取算法[J]. 信号处理, 2018, 34 (1): 31- 38. | 
																													
																						|  | HUANG J H ,  LEI Y K .  An individual communication transmitter fingerprint feature extraction algorithm based on deep learning[J]. Signal Processing, 2018, 34 (1): 31- 38. | 
																													
																						| 10 | HU J, LU J, TAN Y P. Deep transfer metric learning[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 325-333. | 
																													
																						| 11 | ZHANG J, DING Z W, LI W Q, et al. Importance weighted adversarial nets for partial domain adaptation[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8156-8164. | 
																													
																						| 12 | YANG P ,  GAO W .  Information-theoretic multi-view domain adaptation: a theoretical and empirical study[J]. Journal of Artificial Intelligence Research, 2014, 49, 501- 525. doi: 10.1613/jair.4190
 | 
																													
																						| 13 | SHAFIK R A ,  YANG S ,  DAS A , et al.  Learning transfer-based adaptive energy minimization in embedded systems[J]. IEEE Trans.on Computer-aided Design of Integrated Circuits and Systems, 2015, 35 (6): 877- 890. | 
																													
																						| 14 | LIU Z ,  YANG J A ,  LIU H , et al.  Transfer learning by sample selection bias correction and its application in communication specific emitter identification[J]. Journal of Communications, 2016, 11 (4): 417- 427. | 
																													
																						| 15 | LONG M S, WANG J M. Learning transferable features with deep adaptation networks[C]//Proc.of the International Conference on Machine Learning, 2015: 97-105. | 
																													
																						| 16 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. | 
																													
																						| 17 | GRETTON A, SEJDINOVIC D, STRATHMANN H, et al. Optimal kernel choice for large-scale two-sample tests[C]//Proc.of the Advances in Neural Information Processing Systems, 2012: 1205-1213. | 
																													
																						| 18 | 龙明盛.迁移学习问题与方法研究[D].北京: 清华大学, 2014. | 
																													
																						|  | LONG M S. Transfer learning: problem and methods[D]. Beijing: Tsinghua University, 2014. | 
																													
																						| 19 | RUBNER Y ,  TOMASI C ,  GUIBAS L J .  The earth mover's distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40 (2): 99- 121. doi: 10.1023/A:1026543900054
 | 
																													
																						| 20 | YOSINSKI J ,  CLUNE J ,  BENGIO Y , et al.  How transferable are features in deep neural networks?[J]. Advances in Neural Information Processing Systems, 2014, 27, 3320- 3328. | 
																													
																						| 21 | ZHANG J W ,  WANG F G ,  DOBRE O A , et al.  Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2016, 11 (6): 1192- 1205. doi: 10.1109/TIFS.2016.2520908
 | 
																													
																						| 22 | UDIT S ,  NIKITA T ,  GAGARIN B , et al.  Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2018, 14 (3): 581- 591. | 
																													
																						| 23 | PAN S J ,  TSANG I W ,  KWOK J T , et al.  Domain adaptation via transfer component analysis[J]. IEEE Trans.on Neural Networks, 2011, 22 (2): 199- 210. doi: 10.1109/TNN.2010.2091281
 |