| 1 |
兰天鸽, 陈璐. 面向无人机集群的协同识别资源管控设计[J]. 现代雷达, 2023, 45 (6): 63- 66.
|
|
LAN T G, CHEN L. Design of cooperative identification resource control for UAV swarm[J]. Modern Radar, 2023, 45 (6): 63- 66.
|
| 2 |
QIN P, FU Y, ZHANG J, et al. DRL-based resource allocation and trajectory planning for NOMA-enabled multi-UAV collaborative caching 6G network[J]. IEEE Trans. on Vehicular Technology, 2024, 73 (6): 8750- 8764.
doi: 10.1109/TVT.2024.3357086
|
| 3 |
周鹤翔, 徐扬, 罗德林. 针对动态目标的多无人机协同组合差分进化搜索方法[J]. 控制与决策, 2023, 38 (11): 3128- 3136.
|
|
ZHOU H X, XU Y, LUO D L. A composite differential evolution algorithm for multi-UAV cooperative dynamic target search[J]. Control and Decision, 2023, 38 (11): 3128- 3136.
|
| 4 |
严俊坤, 白舸, 黄佳沁, 等. 多机雷达协同区域动态覆盖航迹优化方法[J]. 雷达学报, 2023, 12 (3): 541- 549.
|
|
YAN J K, BAI G, HUANG J Q, et al. Flight path optimization method for dynamic area coverage based on multi-aircraft radars[J]. Journal of Radars, 2023, 12 (3): 541- 549.
|
| 5 |
黄湘松, 于日龙, 潘大鹏. 面向目标定位精度的主从式无人机编队航迹规划方法[J]. 电子学报, 2023, 51 (9): 2289- 2300.
|
|
HUANG X S, YU R L, PAN D P. Route planning method of master-slave UAV formation for target positioning accuracy[J]. Acta Electronica Sinica, 2023, 51 (9): 2289- 2300.
|
| 6 |
DING L T, SHI C G, ZHOU J J. Joint beam pattern design and online route planning for multitarget tracking in airborne radar system[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (1): 774- 788.
doi: 10.1109/TAES.2023.3328799
|
| 7 |
DAI J H, YAN J K, PU W Q, et al. Integrated trajectory planning and resource scheduling for multiple target tracking in airborne radar network[J]. IEEE Sensors Journal, 2024, 24 (9): 15434- 15445.
doi: 10.1109/JSEN.2024.3379384
|
| 8 |
韩统, 汤安迪, 周欢, 等. 基于LASSA算法的多无人机协同航迹规划方法[J]. 系统工程与电子技术, 2022, 44 (1): 233- 241.
|
|
HAN T, TANG A D, ZHOU H, et al. Multiple UAV cooperative path planning based on LASSA method[J]. Systems Engineering and Electronics, 2022, 44 (1): 233- 241.
|
| 9 |
程凝怡, 刘志乾, 李昱奇. 一种基于Dijkstra的多约束条件下智能飞行器航迹规划算法[J]. 西北工业大学学报, 2020, 38 (6): 1284- 1290.
doi: 10.1051/jnwpu/20203861284
|
|
CHENG N Y, LIU Z Q, LI Y Q. A Dijkstra-based algorithm for intelligent vehicle trajectory planning under multiple constraints[J]. Journal of Northwestern Polytechnical University, 2020, 38 (6): 1284- 1290.
doi: 10.1051/jnwpu/20203861284
|
| 10 |
王生印, 龙腾, 王祝, 等. 基于即时修复式稀疏A*算法的动态航迹规划[J]. 系统工程与电子学报, 2018, 40 (12): 2714- 2721.
|
|
WANG S Y, LONG T, WANG Z, et al. Dynamic path planning using anytime repairing sparse A* algorithm[J]. Systems Engineering and Electronics, 2018, 40 (12): 2714- 2721.
|
| 11 |
ZHANG R, GUO H, ANDRIUKAITIS D. , et al. Intelligent path planning by an improved RRT algorithm with dual grad map[J]. Alexandria Engineering Journal, 2024, 88, 91- 104.
doi: 10.1016/j.aej.2023.12.044
|
| 12 |
LI X, WANG L, WANG H, et al. A warm-started trajectory planner for fixed-wing unmanned aerial vehicle formation[J]. Applied Mathematical Modelling, 2023, 122, 200- 219.
doi: 10.1016/j.apm.2023.05.035
|
| 13 |
徐杰, 吴蔚楠, 龚春林. 多无人机任务分配/航迹规划的一体化求解方法[J]. 宇航学报, 2023, 44 (12): 1860- 1870.
|
|
XU J, WU W N, GONG C L. Integrated solution method for multi-UAV task assignment and trajectory planning[J]. Journal of Astronautics, 2023, 44 (12): 1860- 1870.
|
| 14 |
HAN Z L, CHEN M, SHAO S Y, et al. Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning[J]. Aerospace Science and Technology, 2022, 122, 107374.
doi: 10.1016/j.ast.2022.107374
|
| 15 |
LIU J, ANAVATTI S, GARRATT M. Modified continuous ant colony optimisation for multiple unmanned ground vehicle path planning[J]. Expert Systems with Applications, 2022, 196, 116605.
doi: 10.1016/j.eswa.2022.116605
|
| 16 |
PHUNG M D, HA Q P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J]. Applied Soft Computing Journal, 2021, 107, 107376.
doi: 10.1016/j.asoc.2021.107376
|
| 17 |
高泽伦, 郑少秋, 梁汝鹏, 等. 超网络体系下的打击目标优选模型[J]. 系统工程与电子技术, 2023, 46 (1): 182- 189.
|
|
GAO Z L, ZHENG S Q, LIANG R P, et al. Model of strike target preference under super-network system operation[J]. Systems Engineering and Electronics, 2023, 46 (1): 182- 189.
|
| 18 |
夏雨奇, 黄炎焱, 陈怡. 基于深度Q网络的无人车侦察路径规划[J]. 系统工程与电子技术, 2024, 46 (9): 3070- 3081.
|
|
XIA Y Q, HUANG Y Y, CHEN Y. Path planning for unmanned vehicle reconnaissance based on deep Q-network[J]. Systems Engineering and Electronics, 2024, 46 (9): 3070- 3081.
|
| 19 |
HU Z J, GAO X G, WAN K F, et al. Relevant experience learning: a deep reinforcement learning method for UAV autonomous motion planning in complex unknown environments[J]. Chinese Journal of Aeronautics, 2021, 34 (12): 187- 204.
doi: 10.1016/j.cja.2020.12.027
|
| 20 |
傅晋博, 张栋, 王孟阳, 等. 面向目标定位精度提升的无人机航迹规划[J]. 兵工学报, 2023, 44 (11): 3394- 3406.
|
|
FU J B, ZHANG D, WANG M Y, et al. Unmanned aerial vehicle path planning for improved target positioning accuracy[J]. Acta Armamentarii, 2023, 44 (11): 3394- 3406.
|
| 21 |
时晨光, 王奕杰, 代向荣, 等 面向目标跟踪的机载组网雷达辐射参数与航迹规划联合优化算法[J]. 雷达学报, 2022, 11(5): 778−793.
|
|
SHI C G, WANG Y J, DAI X R, et al. Joint transmit resources and trajectory planning for target tracking in airborne radar networks[J]. Journal of Radars, 2022, 11(5): 778−793.
|
| 22 |
SHI C G, WANG F, SELLATHURAI M, et al. Low probability of intercept-based optimal power allocation scheme for an integrated multistatic radar and communication system[J]. IEEE Systems Journal, 2020, 14 (1): 983- 994.
doi: 10.1109/JSYST.2019.2931754
|
| 23 |
刘永坚, 司伟建, 杨承志. 现代电子战支援侦察系统分析与设计[M]. 北京: 国防工业出版社, 2016: 43−47.
|
|
LIU Y J, SI W J, YANG C Z. Analysis and design of reconnaissance systems in modern ESM[M]. Beijing: National Defense Industry Press, 2016: 43−47.
|
| 24 |
陈小龙, 薛永华, 张林, 等. 机载雷达系统与信息处理[M]. 北京: 电子工业出版社, 2021: 150−163.
|
|
CHEN X L, XUE Y H, ZHANG L, et al. Airborne radar system and information processing[M]. Beijing: Publishing House of Electronics Industry, 2021: 150−163.
|
| 25 |
SHI C G, WANG Y J, SALOUS S, et al. Joint transmit resource management and waveform selection strategy for target tracking in distributed phased array radar network[J]. IEEE Trans. on Aerospace Electronic Systems, 2022, 58 (4): 2762- 2778.
doi: 10.1109/TAES.2021.3138869
|
| 26 |
SINGH M, MAHAPATRA S. A quantum behaved particle swarm optimization for flexible job shop scheduling[J]. Computers & Industrial Engineering, 2016, 93, 36- 44.
|
| 27 |
XU X, RONG H, TROVATI M, et al. CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems[J]. Soft Computing, 2018, 22 (3): 783- 795.
doi: 10.1007/s00500-016-2383-8
|
| 28 |
ISMAIL K. A comprehensive analysis of grid-based wind turbine layout using an efficient binary invasive weed optimization algorithm with levy flight[J]. Expert Systems with Applications, 2022, 198, 116835.
doi: 10.1016/j.eswa.2022.116835
|
| 29 |
JENSI R, JIJI G W. An enhanced particle swarm optimization with Levy flight for global optimization[J]. Applied Soft Computing, 2016, 43, 248- 261.
doi: 10.1016/j.asoc.2016.02.018
|
| 30 |
PANG H Y, FAN W F, LIU F, et al. Design of highly uniform field coils based on the magnetic field coupling model and improved PSO algorithm in atomic sensors[J]. IEEE Trans. on Instrumentation and Measurement, 2022, 71, 1- 11.
|