系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3663-3671.doi: 10.12305/j.issn.1001-506X.2025.11.15

• 系统工程 • 上一篇    

基于改进粒子群的民用飞机航材库存配置方法

冯蕴雯1,2,*(), 许嘉炜1,2, 路成1,2, 薛小锋1,2   

  1. 1. 西北工业大学航空学院,陕西 西安 710072
    2. 飞行器基础布局全国重点实验室,陕西 西安 710072
  • 收稿日期:2025-01-21 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 冯蕴雯 E-mail:xujiawei_cauc@163.com
  • 作者简介:许嘉炜(2000—),男,硕士研究生,主要研究方向为维修性工程
    路 成(1989—),男,博士,主要研究方向为可靠性分析、维修性工程
    薛小锋(1982—),男,副研究员,博士,主要研究方向为可靠性工程

Civil aircraft aviation spare parts inventory configuration method based on improved particle swarm

Yunwen FENG1,2,*(), Jiawei XU1,2, Cheng LU1,2, Xiaofeng XUE1,2   

  1. 1. School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2. National Key Laboratory of Aircraft Configuration Design,Xi’an 710072,China
  • Received:2025-01-21 Online:2025-11-25 Published:2025-12-08
  • Contact: Yunwen FENG E-mail:xujiawei_cauc@163.com

摘要:

为解决现有民用飞机航材库存配置方法在大规模配置中易陷入局部最优解问题,提出通过可维修备件多级保障库存技术理论建立民用飞机两级航材库存模型。在此基础上,基于改进粒子群优化(particle swarm optimization, PSO)算法进行航材配置优化。该算法基于航材库存模型简化优化目标,并改进粒子群初始投点策略和速度更新函数,克服陷入局部最优解的缺陷。以民用飞机航材配置方案为案例,改进PSO算法配置金额相较于传统的边际分析法减少16.3%,说明所提改进PSO算法可为民用飞机航材配置中的有效性。改进PSO算法可为民机航材配置提供理论参考。

关键词: 航材, 可维修备件多级保障库存技术, 改进粒子群优化算法, 配置方案

Abstract:

In order to solve the problem that the existing civil aircraft aviation spare parts inventory configuration method is prone to fall into the local optimal solution in large-scale configuration, it is proposed to establish a two-level civil aircraft aviation spare parts inventory model through the multi-echelon technique for recoverable item control theory. On this basis, the aviation spare parts configuration optimization is performed based on the improved particle swarm optimization (PSO) algorithm. The algorithm simplifies the optimization objective based on the aviation spare parts inventory model, and improves the particle swarm initial point strategy and speed update function to overcome the defect of falling into the local optimal solution. Taking civil aircraft aviation spare parts configuration plan as an example, the configuration amount of the improved PSO algorithm is reduced by 16.3% compared with the traditional marginal analysis method, which shows the effectiveness of the proposed improved PSO in civil aircraft aviation spare parts configuration. Improved PSO algorithm provides a theoretical reference for civil aircraft aviation spare parts configuration.

Key words: aviation spare parts, multi-echelon technique for recoverable item control, improved particle swarm optimization algorithm, configuration plan

中图分类号: