系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4166-4173.doi: 10.12305/j.issn.1001-506X.2025.12.28

• 制导、导航与控制 • 上一篇    

基于改进鲸鱼优化算法的超声电机自抗扰控制

冯建鑫, 李昊阳, 巩建雄, 龚柏春   

  1. 南京航空航天大学航天学院,江苏 南京 210016
  • 收稿日期:2024-07-17 修回日期:2024-11-01 出版日期:2025-01-02 发布日期:2025-01-02
  • 通讯作者: 冯建鑫
  • 作者简介:李昊阳(1995—),男,硕士研究生,主要研究方向为复合轴控制
    巩建雄(1998—),男,硕士研究生,主要研究方向为激光通信高精度跟瞄机构伺服控制系统设计
    龚柏春(1987—),男,副教授,博士,主要研究方向为飞行器编队/集群飞行动力学与控制
  • 基金资助:
    国家自然科学基金(12272168)资助课题

Ultrasonic motor ADRC based on improved whale optimization algorithm

Jianxin FENG, Haoyang LI, Jianxiong GONG, Baichun GONG   

  1. Academy of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2024-07-17 Revised:2024-11-01 Online:2025-01-02 Published:2025-01-02
  • Contact: Jianxin FENG

摘要:

针对超声电机强非线性和时变性,提出一种基于改进鲸鱼优化算法(whale optimization algorithm, WOA)的自抗扰控制(active disturbance rejection control, ADRC)方法。首先,将改进线性ADRC与Smith预估器结合,设计三阶ADRC器。然后,采用WOA对控制器参数进行优化,并对传统WOA进行改进。将tent混沌映射应用于种群初始化并引入K-means++聚类算法实现种群分类,对不同类别种群采用相应收敛因子,同时设计非线性惯性权重,进一步提高算法的优化效果。最后,在考虑摩擦的情况下用粒子群优化算法、蜻蜓算法、改进前后的WOA分别优化所设计的控制器,并通过仿真验证了所提方法的有效性。

关键词: 超声电机, 自抗扰控制, 鲸鱼优化算法, 参数优化

Abstract:

Aiming at the strong nonlinearity and time-varying nature of ultrasonic motor, an active disturbance rejection control (ADRC) method based on the improved whale optimization algorithm (WOA) is proposed. Firstly, the improved linear ADRC is combined with the Smith predictor to design a third-order active disturbance rejection controller. Then, the WOA is used to optimize the controller parameters, and the traditional WOA is improved. The tent chaotic map is applied to population initialization and the K-means++ clustering algorithm is introduced to realize population classification. The corresponding convergence factors are used for different types of populations, and the nonlinear inertia weight is designed to further improve the optimization effect of the algorithm. Finally, the designed controller is optimized by using the particle swarm optimization algorithm, the dragonfly algorithm, and the WOA before and after the improvement under the condition of friction, and the effectiveness of the proposed method is verified by simulation.

Key words: ultrasonic motor, active disturbance rejection controll (ADRC), whale optimization algorithm (WOA), parameter optimization

中图分类号: