| 1 |
孔维玮, 冯伟强, 诸葛文章, 等. 美军大中型水面无人艇发展现状及启示[J]. 指挥控制与仿真, 2022, 44 (5): 14- 18.
|
|
KONG W W, FENG W Q, ZHUGE W Z, et al. Development and enlightenment of large and medium-sized unmanned surface vehicles of the US navy[J]. Command Control and Simulation, 2022, 44 (5): 14- 18.
|
| 2 |
齐小刚, 李博, 范英盛, 等. 多约束下多无人机的任务规划研究综述[J]. 智能系统学报, 2020, 15 (2): 204- 217.
|
|
QI X G, LI B, FAN Y S, et al. A survey of mission planning on UAVs systems based on multiple constraints[J]. CAAI Transactions on Intelligent Systems, 2020, 15 (2): 204- 217.
|
| 3 |
毕文豪, 张梦琦, 高飞, 等. 无人机集群任务分配技术研究综述[J]. 系统工程与电子技术, 2024, 46 (3): 922- 934.
|
|
BI W H, ZHANG M Q, GAO F, et al. Review on UAV swarm task allocation technology[J]. Systems Engineering and Electronics, 2024, 46 (3): 922- 934.
|
| 4 |
ZHUANG J Y, LONG L Y, ZHANG L, et al. Research on task allocation for multi-type task of unmanned surface vehicles[J]. Ocean Engineering, 2024, 308, 118321.
doi: 10.1016/j.oceaneng.2024.118321
|
| 5 |
BI W H, ZHANG M Q, CHEN H, et al. Cooperative task allocation method for air-sea heterogeneous unmanned system with an application to ocean environment information monitoring[J]. Ocean Engineering, 2024, 309, 118496.
doi: 10.1016/j.oceaneng.2024.118496
|
| 6 |
ZHANG Y N, TIAN X, LI Y N, et al. Ant colony algorithm based unmanned surface vehicles task allocation design and implementation[C]//Proc.of the IEEE 4th International Conference on Computer Engineering and Intelligent Control, 2023: 274−277.
|
| 7 |
YI N, XU J J, YAN L M, et al. Task optimization and scheduling of distributed cyber-physical system based on improved ant colony algorithm[J]. Future Generation Computer Systems, 2020, 109 (1): 134- 148.
|
| 8 |
LIU Y, WU X, GUO Y K, et al. The multiple unmanned surface vehicles cooperative defense based on PM-PSO and GA-PSO in the sophisticated sea environment[C]//Proc. of the International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques, 2018: 801−809.
|
| 9 |
ZHANG J, REN J, CUI Y N, et al. Multi-USV task planning method based on improved deep reinforcement learning[J]. IEEE Internet of Things Journal, 2024, 11 (10): 18549- 18567.
doi: 10.1109/JIOT.2024.3363044
|
| 10 |
TANG Y N, DOU L Q, ZHANG X Y, et al. Improved CNP-based task allocation for large-scale UAVs with timing constraints[J]. Journal of Aerospace Engineering, 2025, 38 (4): 4025029.
|
| 11 |
DU B, LU Y, CHENG X T, et al. The object-oriented dynamic task assignment for unmanned surface vessels[J]. Engineering Applications of Artificial Intelligence, 2021, 106, 104476.
doi: 10.1016/j.engappai.2021.104476
|
| 12 |
MIYOMBO M E, LIU Y, MULENGA C M, et al. Optimal path planning in a real-world radioactive environment: a comparative study of A-star and Dijkstra algorithms[J]. Nuclear Engineering and Design, 2024, 420, 113039.
doi: 10.1016/j.nucengdes.2024.113039
|
| 13 |
SANG T T, XIAO J C, XIONG J F, et al. Path planning method of unmanned surface vehicles formation based on improved A* algorithm[J]. Journal of Marine Science and Engineering, 2023, 11 (1): 176.
doi: 10.3390/jmse11010176
|
| 14 |
ZHANG B, LU S L, LI Q, et al. Escape path planning for unmanned surface vehicle based on blind navigation rapidly exploring random tree* fusion algorithm[J]. Sensors, 2024, 24 (23): 7596.
doi: 10.3390/s24237596
|
| 15 |
ZHOU X J, TANG Z H, WANG N, et al. A novel state transition algorithm with adaptive fuzzy penalty for multi-constraint UAV path planning[J]. Expert Systems with Applications, 2024, 248, 123481.
doi: 10.1016/j.eswa.2024.123481
|
| 16 |
LIANG X Y, JIANG P, ZHU H. Path planning for unmanned surface vehicle with dubins curve based on GA[C]//Proc. of the IEEE Chinese Automation Congress, 2020: 5149−5154.
|
| 17 |
CHEN Y L, BAI G Q, ZHAN Y, et al. Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning[J]. IEEE Access, 2021, 9, 40728- 40742.
doi: 10.1109/ACCESS.2021.3062375
|
| 18 |
ZHAI H R, WANG W H, ZHANG W, et al. Path planning algorithms for USVs via deep reinforcement learning[C]//Proc. of the IEEE China Automation Congress, 2021: 4281−4286.
|
| 19 |
LI X W, SONG H S, HAN Z J, et al. An improved artificial potential field algorithm with swerving force for USV path planning[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2021: 1019−1024.
|
| 20 |
徐小强, 王明勇, 冒燕. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2020, 40 (12): 3508- 3512.
|
|
XU X Q, WANG M Y, MAO Y. Path planning of mobile robot based on improved artificial potential field method[J]. Journal of Computer Applications, 2020, 40 (12): 3508- 3512.
|
| 21 |
ZHANG L Y, HAN Y, JIANG B. Research on path planning method of unmanned boat based on improved artificial potential field method[C]//Proc. of the IEEE 6th Asian Conference on Artificial Intelligence Technology, 2022.
|
| 22 |
时维国, 宁宁, 宋存利, 等. 基于蚁群算法与人工势场法的移动机器人路径规划[J]. 农业机械学报, 2023, 54 (12): 407- 416.
|
|
SHI W G, NING N, SONG C L, et al. Path planning of mobile robots based on ant colony algorithm and artificial potential field algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (12): 407- 416.
|
| 23 |
韩尧, 李少华. 基于改进人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2021, 43 (11): 3305- 3311.
doi: 10.12305/j.issn.1001-506X.2021.11.31
|
|
HAN Y, LI S H. UAV path planning based on improved artificial potential field[J]. Systems Engineering and Electronics, 2021, 43 (11): 3305- 3311.
doi: 10.12305/j.issn.1001-506X.2021.11.31
|
| 24 |
WANG D, CHEN H M, WU C C. A path planning and obstacle avoidance method for USV based on dynamic-target APF algorithm in edge[C]//Proc. of the International Conference on Algorithms and Architectures for Parallel Processing, 2023: 21−39.
|
| 25 |
王庆禄, 吴冯国, 郑成辰, 等. 基于优化人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2023, 45 (5): 1461- 1468.
|
|
WANG Q L, WU F G, ZHENG C C, et al. UAV path planning based on optimized artificial potential field method[J]. Systems Engineering and Electronics, 2023, 45 (5): 1461- 1468.
|
| 26 |
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996: 226−231.
|
| 27 |
苏菲, 陈岩, 沈林成. 基于蚁群算法的无人机协同多任务分配[J]. 航空学报, 2008, (S1): 184- 191.
|
|
SU F, CHEN Y, SHEN L C. UAV cooperative multi-task assignment based on ant colony algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2008, (S1): 184- 191.
|
| 28 |
宋佳瑞. 基于人工势场法的机器人避障问题研究[D]. 沈阳: 沈阳工业大学, 2017.
|
|
SONG J R. Obstacle avoidance problem study of robot based on artificial potential field method[D]. Shenyang: Shenyang University of Technology, 2017.
|
| 29 |
谢朔. 基于多新息辨识理论的USV运动模型参数辨识[D]. 武汉: 武汉理工大学, 2017.
|
|
XIE S. Motion model parameters identification of USV based on multi-innovation theory[D]. Wuhan: Wuhan University of Technology, 2017.
|
| 30 |
贾胜伟. 基于运动模型的水面无人艇路径规划[D]. 大连: 大连理工大学, 2022.
|
|
JIA S W. Path planning of unmanned surface vehicle based on motion model[D]. Dalian: Dalian University of Technology, 2022.
|