1 |
党亚民, 蒋涛, 杨元喜, 等. 中国大地测量研究进展(2019-2023)[J]. 测绘学报, 2023, 52 (9): 1419- 1436.
|
|
DANG Y M , JIANG T , YANG Y X , et al. Research progress of geodesy in China (2019-2023)[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52 (9): 1419- 1436.
|
2 |
TEIXEIRA F C , MANUEL P A . Geophysical navigation of autonmous underwater vehicles[J]. IFAC Proceedings, 2007, 40 (17): 117- 122.
|
3 |
郑伟, 李钊伟, 吴凡. 天海一体化水下重力辅助导航研究进展[J]. 国防科技大学学报, 2020, 42 (3): 39- 49.
|
|
ZHENG W , LI Z W , WU F . Research progress of the underwater gravity-aided navigation based on the information of aerospace-marine integration[J]. Journal of National University of Defense Technology, 2020, 42 (3): 39- 49.
|
4 |
XI M H , WU L , LI Q Q , et al. Matching area selection for arctic gravity matching navigation based on adaptive all-field extended extremum algorithm[J]. IET Radar, Sonar & Navigation, 2024, 8 (18): 1307- 1317.
|
5 |
WANG B , ZHU J W , DENG Z H , et al. A characteristic parameter matching algorithm for gravity-aided navigation of underwater vehicles[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (2): 1203- 1212.
doi: 10.1109/TIE.2018.2831171
|
6 |
李兰玉, 熊凌, 李开寒. 一种结合匹配区选择和障碍物探测的水下路径规划方法[J]. 武汉科技大学学报, 2014, 37 (4): 305- 309.
|
|
LI L Y , XIONG L , LI K H . An approach to underwater path planning based on adaptive area selection and obstacle detection[J]. Journal of Wuhan University of Science and Technology, 2014, 37 (4): 305- 309.
|
7 |
张浩杰, 张玉东, 梁荣敏, 等. 改进A * 算法的机器人能耗最优路径规划方法[J]. 系统工程与电子技术, 2023, 45 (2): 513- 520.
doi: 10.12305/j.issn.1001-506X.2023.02.23
|
|
ZHANG H J , ZHANG Y D , LIANG R M , et al. Energy-efficient path planning method for robots based on improved A * algorithm[J]. Systems Engineering and Electronics, 2023, 45 (2): 513- 520.
doi: 10.12305/j.issn.1001-506X.2023.02.23
|
8 |
张泉先, 曾斌, 李厚朴. 海况影响下的分布式海战补给路径规划方法[J]. 系统工程与电子技术, 2020, 42 (10): 2312- 2319.
doi: 10.3969/j.issn.1001-506X.2020.10.20
|
|
ZHANG Q X , ZENG B , LI H P . Underway replenishment path planning method for distributed navel warfare under the influence of sea conditions[J]. Systems Engineering and Electronics, 2020, 42 (10): 2312- 2319.
doi: 10.3969/j.issn.1001-506X.2020.10.20
|
9 |
PERSSON S M , SHARF I . Sampling-based A * algorithm for robot path-pathing[J]. The International Journal of Robotics Research, 2014, 33 (13): 1683- 1708.
doi: 10.1177/0278364914547786
|
10 |
欧阳明达, 马越原. 基于改进A * 算法的水下重力匹配导航路径规划[J]. 地球物理学报, 2020, 63 (12): 4361- 4368.
|
|
OUYANG M D , MA Y Y . Path planning for gravity aided navigation based on improved A * algorithm[J]. Chinese Journal of Geophysics, 2020, 63 (12): 4361- 4368.
|
11 |
张驰, 李姗姗, 史颜俊, 等. 蚁群-势场算法在水下重力辅助导航航路规划中的应用[J]. 测绘学报, 2020, 49 (7): 865- 873.
|
|
ZHANG C , LI S S , SHI Y J , et al. Application of ant colony-potential field algorithm in underwater gravity matching navigation track planning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49 (7): 865- 873.
|
12 |
张锦柏, 肖云, 陈垲宁. 多属性决策与改进A * 算法规划重力匹配导航航路[J]. 测绘科学, 2023, 48 (9): 38- 48.
|
|
ZHANG J B , XIAO Y , CHEN K N . Multi-attribute decision theory and improved A * algorithm for planning gravity matching navigation tracks[J]. Science of Surveying and Mapping, 2023, 48 (9): 38- 48.
|
13 |
朱宇炜. 基于重力信息的航路规划方法研究[D]. 北京: 北京理工大学, 2016.
|
|
ZHU Y W. Route planning research based on gravity information[D]. Beijing: Beijing Institute of Technology, 2016.
|
14 |
宗敬文. 海洋重力场精化方法与重力匹配导航应用研究[D]. 武汉: 海军工程大学, 2023.
|
|
ZONG J W. Research on marine gravity field refining method and gravity matching navigation application[D]. Wuhan: Naval University of Engineering, 2023.
|
15 |
赖荣燊, 窦磊, 巫志勇, 等. 融合改进A * 算法和动态窗口法的移动机器人路径规划[J]. 系统仿真学报, 2024, 36 (8): 1884- 1894.
|
|
LAI R Y , DOU L , WU Z Y , et al. Fusion of improved A * and dynamic window approach for mobile robot path planning[J]. Journal of System Simulation, 2024, 36 (8): 1884- 1894.
|
16 |
吴鹏, 桑成军, 陆忠华, 等. 基于改进A * 算法的移动机器人路径规划研究[J]. 计算机工程与应用, 2019, 55 (21): 227- 233.
|
|
WU P , SANG C J , LU Z H , et al. Research on mobile robot path planning based on improved A * algorithm[J]. Computer Engineering and Applications, 2019, 55 (21): 227- 233.
|
17 |
张岩, 杨龙. 最短路问题的Floyd算法优化及分析[J]. 信息技术, 2017 (10): 30- 32.
|
|
ZHANG Y , YANG L . Optimization and analysis of floyd algorithmic for the shortest path problem[J]. Information Technology, 2017 (10): 30- 32.
|
18 |
LI Q , BAO L , SHUM C K . Altimeter-derived marine gravity variations reveal the magma mass motions within the subaqueous Nishinoshima volcano, Izu-Bonin Arc, Japan[J]. Journal of Geodesy, 2021, 95 (5): 46.
|
19 |
WANG H B , WU L , CHAI H , et al. Characteristics of marine gravity anomaly reference maps and accuracy analysis of gravity matching-aided navigation[J]. Sensors, 2017, 17 (8): 1851.
|
20 |
SANDWELL D T , MULLER R D , SMITH W H F , et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346 (6205): 65- 67.
|
21 |
TOZER B , SANDWELL D T , SMITH W H F , et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6 (10): 1847- 1864.
|
22 |
ZONG J W , BIAN S F , TONG Y D , et al. Classification of gravity matching areas using PSO-BP neural networks based on PCA and satellite altimetry data over the western pacific[J]. Sensors, 2022, 22 (24): 9892.
|