系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (2): 472-480.doi: 10.12305/j.issn.1001-506X.2023.02.18
• 系统工程 • 上一篇
吴诗辉1,*, 周宇2, 李正欣1, 刘晓东1, 贺波1
收稿日期:
2021-03-21
出版日期:
2023-01-13
发布日期:
2023-02-04
通讯作者:
吴诗辉
作者简介:
吴诗辉 (1982—), 男, 副教授, 博士, 主要研究方向为装备发展论证、装备经济管理、SO、决策理论基金资助:
Shihui WU1,*, Yu ZHOU2, Zhengxin LI1, Xiaodong LIU1, Bo HE1
Received:
2021-03-21
Online:
2023-01-13
Published:
2023-02-04
Contact:
Shihui WU
摘要:
时变参数系统的仿真优化问题是一个新兴的研究课题, 相比传统仿真优化, 时变参数系统对实时性的要求高, 而对解的精度要求不高。本文提出将该问题转换为一类神经网络预测问题, 并从理论上证明了该方法的可行性。首先, 线下构建神经网络模型描述输入参数到最优解的映射关系; 然后, 利用训练好的神经网络模型线上实时预测最优解。考虑到边界样本对最优解拟合曲面的影响, 提出构建中心样本和边界样本,分别训练两个神经网络模型。仿真和实例表明, 该方法能够随时变参数的变化实时给出满意解, 从而为求解时变参数仿真优化问题提供一种新的解决思路。
中图分类号:
吴诗辉, 周宇, 李正欣, 刘晓东, 贺波. 基于神经网络的时变参数系统仿真优化方法[J]. 系统工程与电子技术, 2023, 45(2): 472-480.
Shihui WU, Yu ZHOU, Zhengxin LI, Xiaodong LIU, Bo HE. Approach to simulation optimization of time-varying parameters system based on neural network[J]. Systems Engineering and Electronics, 2023, 45(2): 472-480.
表1
部分原始训练数据表"
样本序号 | 训练样本参数取值 | 最优解 | ||||||
a1 | a2 | a3 | a4 | a5 | xmin | ymin | ||
1 | 0.115 6 | -0.249 1 | -0.311 5 | -0.320 9 | 1.449 7 | 0.979 4 | -0.134 3 | |
2 | -0.044 9 | 0.045 9 | 0.218 8 | -0.164 9 | 1.680 3 | 2.752 2 | -0.189 4 | |
3 | 0.094 5 | -0.082 | -0.398 3 | 0.023 7 | -1.160 1 | 14.914 4 | -0.539 1 | |
4 | -0.021 1 | 0.098 3 | 0.561 3 | -0.487 7 | 1.344 4 | 19.5 | -0.143 1 | |
5 | 0.070 8 | 0.178 | -0.028 6 | 0.290 6 | 0.608 3 | 13.406 8 | -0.574 7 |
表2
测试样本及神经网络预测结果"
样本序号 | 测试样本参数取值 | 实际最优解 | 预测最优解 | ||||||||
a1 | a2 | a3 | a4 | a5 | xmin | ymin | xp | yp | |||
1 | 0.12 | -0.213 | 0.54 | -0.17 | 1.23 | 3.745 9 | -0.23 | 3.623 2 | -0.226 7 | ||
2 | 0.15 | -0.3 | 0.6 | -0.4 | 1.1 | 4.054 4 | -0.070 3 | 3.414 8 | -0.034 4 | ||
3 | -0.1 | 0.2 | 0.5 | 0.1 | 1.3 | 18.332 1 | -6.925 | 18.556 4 | -6.797 7 | ||
4 | -0.2 | 0.2 | -0.54 | 0.17 | -1.23 | 19.354 6 | -23.666 3 | 19.222 8 | -23.477 8 |
表4
测试样本及3个神经网络的优化结果"
测试参数集 | 实际最优解 | NN1预测最优解 | NN2预测最优解 | NN0预测最优解 |
(3, 4, 4, 4, 5) | xmin=(-0.375, -0.437 5) ymin=3.156 3 | xmin=(-0.361 4, -0.283 9)* ymin=3.259 5 | xmin=(-2.556 9, -2.140 9) ymin=43.911 3 | xmin=(-0.300 4, 0.610 6) ymin=7.879 4 |
(-7, 2, -3, -6, -8) | xmin=(5, 5) ymin=-265 | xmin=(3.707 8, -1.868 2) ymin=-70.773 7 | xmin=(5, 5)* ymin=-265 | xmin=(4.707 5, 5) ymin=-238.979 8 |
表5
不同方法实验结果对比"
方法 | 寻优指标 | 测试参数集 | |
(3, 4, 4, 4, 5) | (-7, 2, -3, -6, -8) | ||
本文方法 | xmin | xmin=(-0.361 4, -0.283 9) ymin=3.259 5 | xmin=(5, 5) ymin=-265 |
T/s | 0.041 1 | 0.038 1 | |
Nfevl/次 | 0 | 0 | |
文献[ (样本间隔[0.05, 0.05]) | xmin | xmin=(-0.351 16, -0.45) ymin=3.157 4 | xmin=(5, 5) ymin=-265 |
T/s | 29.85 | 20.22 | |
Nfevl/次 | 40 401 | 40 401 | |
文献[ (样本间隔[0.1, 0.1]) | xmin | xmin=(-0.28, -0.48) ymin=3.174 4 | xmin=(5, 5) ymin=-265 |
T/s | 7.76 | 7.58 | |
Nfevl/次 | 10 201 | 10 201 | |
文献[ | xmin | xmin=(-0.374 9, -0.437 5) ymin=3.156 3 | xmin=(5, 5) ymin=-265 |
T/s | 0.096 2 | 0.096 7 | |
Nfevl/次 | 10 410 | 10 410 |
1 |
DONG K S , HUANG H Q , HUANG C Q , et al. Trajectory online optimization for unmanned combat aerial vehicle using combined strategy[J]. Journal of Systems Engineering and Electronics, 2017, 28 (5): 963- 970.
doi: 10.21629/JSEE.2017.05.14 |
2 | AZADIVAR F. Simulation optimization methodologies[C]//Proc. of the Winter Simulation Conference, 1999: 93-100. |
3 |
AMARAN S , SAHINIDIS N V , SHARDA B , et al. Simulation optimization: a review of algorithms and applications[J]. Annals of Operations Research, 2016, 240 (1): 351- 380.
doi: 10.1007/s10479-015-2019-x |
4 | LIU R , XIE X L , YU K Y , et al. A survey on simulation optimization for the manufacturing system operation[J]. International Journal of Modelling & Simulation, 2018, 38 (2): 116- 127. |
5 | BARTON R R, MECKESHEIMER M. Chapter 18: Metamodel-based simulation optimization[M]//HENDERSON S G, NELSON B L, ed. Handbooks in operation research & management science. Amsterdam: North Holland, 2006. |
6 |
HONG L J , JIANG G . Offline simulation online application: a new framework of simulation-based decision making[J]. Asia-Pacific Journal of Operational Research, 2019, 36 (6): 1940015.
doi: 10.1142/S0217595919400153 |
7 |
KLEIJNEN J P C . Regression metamodels for generalizing simulation results[J]. IEEE Trans.on Systems, Man, and Cyberne-tics, 1979, 9 (2): 93- 96.
doi: 10.1109/TSMC.1979.4310155 |
8 |
CAN B , HEAVEY C . A comparison of genetic programming and artificial neural networks in metamodeling of discrete-event simulation models[J]. Computers Operations Research, 2012, 39 (2): 424- 436.
doi: 10.1016/j.cor.2011.05.004 |
9 | TRIKI M, CHABCHOUB H. A neural network-based simulation meta model for a process parameters optimization: a case study[C]//Proc. of the 4th International Conference on Logistics, 2011: 323-328. |
10 |
FONSECA D J , NAVARESSE D O , MOYNIHAN G P . Simulation metamodeling through artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 2003, 16 (3): 177- 183.
doi: 10.1016/S0952-1976(03)00043-5 |
11 |
GHOSH S , ROY A , CHAKRABORTY S . Support vector regression based metamodeling for seismic reliability analysis of structures[J]. Applied Mathematical Modelling, 2018, 64, 584- 602.
doi: 10.1016/j.apm.2018.07.054 |
12 |
ROY A , MANNA R , CHAKRABORTY S . Support vector regression based metamodeling for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2019, 55, 78- 89.
doi: 10.1016/j.probengmech.2018.11.001 |
13 |
KLEIJNEN J P C . Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192 (3): 707- 716.
doi: 10.1016/j.ejor.2007.10.013 |
14 |
WANG S , NG S H , HASKELL W B . A multilevel simulation optimization approach for quantile functions[J]. INFORMS Journal on Computing, 2022, 34 (1): 569- 585.
doi: 10.1287/ijoc.2020.1049 |
15 | 李耀辉. 基于Kriging模型的全局近似与SO方法[D]. 武汉: 华中科技大学, 2015. |
LI Y H. The Kriging-based global approximation and simulation optimization methods[D]. Wuhan: Huazhong University of Science & Technology, 2015. | |
16 |
COELHO G F , PINTO L R . Kriging-based simulation optimization: an emergency medical system application[J]. Journal of the Operational Research Society, 2018, 69 (12): 2006- 2020.
doi: 10.1080/01605682.2017.1418149 |
17 |
ANKENMAN B E , NELSON B L , STAUM J . Stochastic Kriging for simulation metamodeling[J]. Operations Research, 2010, 58 (2): 371- 382.
doi: 10.1287/opre.1090.0754 |
18 |
FAN Q , HU J Q . Surrogate-based promising area search for lipschitz continuous simulation optimization[J]. INFORMS Journal on Computing, 2018, 30 (4): 677- 693.
doi: 10.1287/ijoc.2017.0801 |
19 | BARTON R R. Simulation metamodels[C]//Proc. of the Winter Simulation Conference, 1998: 167-176. |
20 |
KLEIJNEN J P C , SARGENT R G . A methodology for fitting and validating metamodels in simulation[J]. European Journal of Operational Research, 2000, 120 (1): 14- 29.
doi: 10.1016/S0377-2217(98)00392-0 |
21 |
BOZAGAC D , BATMAZ I , OGUZTUZUN H . Dynamic simulation metamodeling using MARS: a case of radar simulation[J]. Mathematics and Computers in Simulation, 2016, 124, 69- 86.
doi: 10.1016/j.matcom.2016.01.005 |
22 |
WANG Q , FANG H B , SHEN L . Reliability analysis of tunnels using a metamodeling technique based on augmented radial basis functions[J]. Tunnelling and Underground Space Technology, 2016, 56, 45- 53.
doi: 10.1016/j.tust.2016.02.007 |
23 |
ZHANG C , WEI H K , XIE L P , et al. Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework[J]. Neurocomputing, 2016, 205, 53- 63.
doi: 10.1016/j.neucom.2016.03.061 |
24 |
HUSSAIN M F , BARTON R R , JOSHI S B . Metamodeling: radial basis functions, versus polynomials[J]. European Journal of Operational Research, 2002, 138 (1): 142- 154.
doi: 10.1016/S0377-2217(01)00076-5 |
25 | DUNKE F , NICKEL S . Neural networks for the metamodeling of simulation models with online decision making[J]. Simulation Modelling Practice and Theory, 2020, 99 (14): 102016. |
26 | HURRION R D , BIRGIL S . A comparison of factorial and random experimental design methods for the development of regression and neural network simulation metamodels[J]. Journal of the Operational Research Society, 1999, 50, 1018- 1033. |
27 |
BADIRU A B , SIEGER D B . Neural network as a simulation metamodel in economic analysis of risky projects[J]. European Journal of Operational Research, 1998, 105 (1): 130- 142.
doi: 10.1016/S0377-2217(97)00029-5 |
28 |
CHRYSSOLOURIS G , LEE M , DOMROESE M . The use of neural networks in determining operational policies for manufacturing systems[J]. Journal of Manufacturing Systems, 1991, 10 (2): 166- 175.
doi: 10.1016/0278-6125(91)90018-W |
29 |
VAN GELDER L , DAS P , JANSSEN H , et al. Comparative study of meta modelling techniques in building energy simulation: guidelines for practitioners[J]. Simulation Modelling Practice and Theory, 2014, 49, 245- 257.
doi: 10.1016/j.simpat.2014.10.004 |
30 | MOUELHI-CHIBANI W , PIERREVAL H . Training a neural network to select dispatching rules in real time[J]. Computers & Industrial Engineering, 2010, 58 (2): 249- 256. |
31 | 吴诗辉, 刘晓东, 邵悦, 等. 一种基于神经网络的SO方法[J]. 系统仿真学报, 2018, 30 (1): 36- 44. |
WU S H , LIU X D , SHAO Y , et al. Optimization via simulation based on neural network[J]. Journal of System Simulation, 2018, 30 (1): 36- 44. | |
32 | 吴诗辉, 张发, 李正欣, 等. 基于神经网络的SO算法设计[J]. 系统工程与电子技术, 2019, 41 (6): 1324- 1335. |
WU S H , ZHANG F , LI Z X , et al. Design of algorithm for neural network based optimization via simulation[J]. Systems Engineering and Electronics, 2019, 41 (6): 1324- 1335. | |
33 |
CHANG X K , DONG M , YANG D . Multi-objective real-time dispatching for integrated delivery in a Fab using GA based simulation optimization[J]. Journal of Manufacturing Systems, 2013, 32 (4): 741- 751.
doi: 10.1016/j.jmsy.2013.07.001 |
[1] | 罗宇航, 陈彦锡, 郭琨毅, 盛新庆, 马静. 基于神经网络和散射中心模型的目标参数提取[J]. 系统工程与电子技术, 2023, 45(1): 9-14. |
[2] | 宋爽, 张悦, 张琳娜, 岑翼刚, 李浥东. 基于深度学习的轻量化目标检测算法[J]. 系统工程与电子技术, 2022, 44(9): 2716-2725. |
[3] | 聂倩, 杨丽花, 呼博, 任露露. 基扩展模型下基于LSTM神经网络的时变信道预测方法[J]. 系统工程与电子技术, 2022, 44(9): 2971-2977. |
[4] | 王健, 何自豪, 刘洁, 杨珂. 基于梯度域导向滤波器和改进PCNN的图像融合算法[J]. 系统工程与电子技术, 2022, 44(8): 2381-2392. |
[5] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[6] | 王冠, 茹海忠, 张大力, 马广程, 夏红伟. 弹性高超声速飞行器智能控制系统设计[J]. 系统工程与电子技术, 2022, 44(7): 2276-2285. |
[7] | 樊成, 王布宏, 田继伟. 基于多任务学习图卷积模型的航空网络节点分类[J]. 系统工程与电子技术, 2022, 44(7): 2341-2349. |
[8] | 金国栋, 薛远亮, 谭力宁, 许剑锟. 基于孪生神经网络的目标跟踪算法进展研究[J]. 系统工程与电子技术, 2022, 44(6): 1805-1822. |
[9] | 韦娟, 杨皇卫, 宁方立. 基于NMF与CNN联合优化的声学场景分类[J]. 系统工程与电子技术, 2022, 44(5): 1433-1438. |
[10] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[11] | 张普, 薛惠锋, 高山, 左轩. 具有混合执行器故障的多智能体分布式有限时间自适应协同容错控制[J]. 系统工程与电子技术, 2022, 44(4): 1220-1229. |
[12] | 胥涯杰, 鲜勇, 李邦杰, 任乐亮, 李少朋, 郭玮林. 基于神经网络的高超声速飞行器惯导系统精度提高方法[J]. 系统工程与电子技术, 2022, 44(4): 1301-1309. |
[13] | 方伟, 王玉, 闫文君, 林冲. 基于神经网络的符号化飞行动作识别[J]. 系统工程与电子技术, 2022, 44(3): 737-745. |
[14] | 孙晶明, 虞盛康, 孙俊. 基于深度学习的HRRP识别姿态敏感性分析[J]. 系统工程与电子技术, 2022, 44(3): 802-807. |
[15] | 张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(3): 939-947. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||