1 |
LIT L,DUL.Target discrimination for SAR ATR based on scattering center feature and K-center one-class classification[J].IEEE Sensors Journal,2018,18(6):2453-2461.
doi: 10.1109/JSEN.2018.2791947
|
2 |
DINGB Y,WENG J.Target reconstruction based on 3-D scattering center model for robust SAR ATR[J].IEEE Trans.on Geoscience and Remote Sensing,2018,56(7):3772-3785.
doi: 10.1109/TGRS.2018.2810181
|
3 |
GUOK Y,QUQ Y.Geometry reconstruction based on attri-butes of scattering centers by using time-frequency representations[J].IEEE Trans.on Antennas and Propagation,2016,64(2):708-720.
doi: 10.1109/TAP.2015.2511779
|
4 |
LIUJ,HES Y,ZHANGL,et al.An automatic and forward method to establish 3-D parametric scattering center models of complex targets for target recognition[J].IEEE Trans.on Geoscience and Remote Sensing,2020,58(12):8701-8716.
doi: 10.1109/TGRS.2020.2989856
|
5 |
BHALLAR,MOOREJ.A global scattering center representation of complex targets using the shooting and bouncing ray technique[J].IEEE Trans.on Antennas and Propagation,1997,45(12):1850-1856.
doi: 10.1109/8.650204
|
6 |
QUQ Y,GUOK Y,SHENGX Q.Scattering centers induced by creeping waves on cone-shaped targets in bistatic mode[J].IEEE Trans.on Antennas and Propagation,2015,63(7):3257-3262.
doi: 10.1109/TAP.2015.2424455
|
7 |
YANGC X,ZHANGJ,TONGM S.A hybrid quantum-behaved particle swarm optimization algorithm for solving inverse scattering problems[J].IEEE Trans.on Antennas and Propagation,2021,69(9):5861-5869.
doi: 10.1109/TAP.2021.3060592
|
8 |
WEIY K,LIY C,DINGZ G,et al.SAR parametric super-resolution image reconstruction methods based on ADMM and deep neural network[J].IEEE Trans.on Geoscience and Remote Sensing,2021,59(12):10197-10212.
doi: 10.1109/TGRS.2021.3052793
|
9 |
PANM A,LIUA L,YUY Z,et al.Radar HRRP target recognition model based on a stacked CNN-Bi-RNN with attention mechanism[J].IEEE Trans.on Geoscience and Remote Sensing,2021,
doi: 10.1109/TGRS.2021.3055061
|
10 |
MANJUSHAK,KUMARM A,SOMANK P.Integrating scattering feature maps with convolutional neural networks for Malayalam handwritten character recognition[J].Document Analysis and Recognition,2018,21(3):187-198.
doi: 10.1007/s10032-018-0308-z
|
11 |
FENGS J,JIK F,ZHANGL B,et al.SAR target classification based on integration of ASC parts model and deep learning algorithm[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14,10213-10225.
doi: 10.1109/JSTARS.2021.3116979
|
12 |
MALMGREN-HANSEND,KUSKA,DALLJ,et al.Improving SAR automatic target recognition models with transfer learning from simulated data[J].IEEE Geoscience and Remote Sensing Letters,2017,14(9):1484-1488.
doi: 10.1109/LGRS.2017.2717486
|
13 |
MUFTI M A, HADHRAMI E A, TAHA B, et al. Using transfer learning technique for SAR automatic target recognition[C]//Proc. of the SPIE Future Sensing Technologies, 2019.
|
14 |
ZHOUY J,LEIZ,CAOY H,et al.Attitude estimation and geometry reconstruction of satellite targets based on ISAR image sequence interpretation[J].IEEE Trans.on Aerospace and Electronic Systems,2018,55(4):1698-1711.
|
15 |
WEN Y, CHEN X, WEI Y, et al. SAR parameter estimation method for rectangle plane based on information geometry[C]// Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019.
|
16 |
YUX,EFEM O,KAYNAKO.A general backpropagation algorithm for feedforward neural networks learning[J].IEEE Trans.on Neural Networks,2002,13(1):251.
doi: 10.1109/72.977323
|
17 |
JIN H. Application of advanced BP neural network in image recognition[C]//Proc. of the 18th International Symposium on Distributed Computing and Applications for Business Engineering and Science, 2019.
|
18 |
ZHANGC C,YUS,LIG J,et al.The recognition method of MQAM signals based on BP neural network and bird swarm algorithm[J].IEEE Access,2021,9,36078-36086.
doi: 10.1109/ACCESS.2021.3061585
|
19 |
郭琨毅,牛童瑶,屈泉酉,等.散射中心的时频像特征研究[J].电子与信息学报,2016,38(2):478-485.
|
|
GUOK Y,NIUT Y,QUQ Y,et al.Study on time-frequency image characteristics of scattering center[J].Journal of Electronics and Information,2016,38(2):478-485.
|
20 |
艾俊强,陈如山,陈晓盼,等.电磁计算十大问题[J].电波科学学报,2020,35(1):3-12.
|
|
AIJ Q,CHENR S,CHENX P,et al.Ten problems in electromagnetic calculation[J].Journal of Radio Wave Science,2020,35(1):3-12.
|
21 |
殷红成,郭琨毅.目标电磁散射特性研究的若干热点和难点问题[J].电波科学学报,2020,35(1):128-134.
|
|
YINH C,GUOK Y.Some hot and difficult problems in the study of electromagnetic scattering characteristics of targets[J].Journal of Radio Wave Science,2020,35(1):128-134.
|
22 |
AUGERF,FLANDRINP.Improving the readability of time-frequency and time-scale representations by the reassignment method[J].IEEE Trans.on Signal Processing,1995,43(5):1068-1089.
doi: 10.1109/78.382394
|
23 |
XINR Y,JIANGZ,SHAOY T.Complex network classification with convolutional neural network[J].Tsinghua Science and Technology,2020,25(4):447-457.
doi: 10.26599/TST.2019.9010055
|
24 |
GUO L S, LI M K, XU S H, et al. Study on a recurrent con-volutional neural network based FDTD method[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2019.
|
25 |
LAMPRECHT C, BEKHRAD P, IVANOV H, et al. Modelling the refractive index structure parameter: a ResNet approach[C]//Proc. of the International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications, 2020.
|
26 |
HAQUE M F, LIM H Y, KANG D S. Object detection based on VGG with ResNet network[C]//Proc. of the International Conference on Electronics, Information, and Communication, 2019.
|
27 |
LIU Z M, LI C Q, FENG K. Application research of BP neural network optimized by genetic algorithm and particle swarm optimization algorithm in MBR simulation[C]//Proc. of the 2nd International Conference on Artificial Intelligence and Big Data, 2019.
|
28 |
DENGH,ZHANGW X,LIANGZ F.Application of BP neural network and convolutional neural network (CNN) in bearing fault diagnosis[J].IOP Conference Series: Materials Science and Engineering,2021,1043(4):042026.
doi: 10.1088/1757-899X/1043/4/042026
|
29 |
GUAN C L, YANG Y. Research of computer network security evaluation based on back propagation neural network[C]//Proc. of the IEEE International Conference on Power, Intelligent Computing and Systems, 2019.
|
30 |
SHI X X, MA S X, YU C L, et al. Research on prediction model of explosive explosion velocity based on improved BP neural network[C]//Proc. of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, 2020.
|