Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (9): 2986-2998.doi: 10.12305/j.issn.1001-506X.2023.09.40
• Reliability • Previous Articles
Zichang LIU1,2, Yongsheng BAI1, Siyu LI1, Xisheng JIA1,*
Received:
2022-11-14
Online:
2023-08-30
Published:
2023-09-05
Contact:
Xisheng JIA
CLC Number:
Zichang LIU, Yongsheng BAI, Siyu LI, Xisheng JIA. Diesel engine fault diagnosis method based on wavelet time-frequency diagram and Swin Transformer[J]. Systems Engineering and Electronics, 2023, 45(9): 2986-2998.
Table 1
Swin Transformer network parameters"
阶段 | 输出大小 | Swin Transformer |
阶段1 | 56×56 | |
阶段2 | 28×28 | |
阶段3 | 14×14 | |
阶段4 | 7×7 |
Table 2
Ten kinds of bearing data selected"
状态序号 | 故障位置 | 故障直径/ mm | 电机载荷/ hp | 电机转速/(r/min) |
1 | 正常 | - | 0 | 1 797 |
2 | 内圈故障 | 0.177 8 | 0 | 1 797 |
3 | 内圈故障 | 0.355 6 | 0 | 1 797 |
4 | 内圈故障 | 0.544 3 | 0 | 1 797 |
5 | 外圈故障 | 0.177 8 | 0 | 1 797 |
6 | 外圈故障 | 0.355 6 | 0 | 1 797 |
7 | 外圈故障 | 0.544 3 | 0 | 1 797 |
8 | 滚动体故障 | 0.177 8 | 0 | 1 797 |
9 | 滚动体故障 | 0.355 6 | 0 | 1 797 |
10 | 滚动体故障 | 0.544 3 | 0 | 1 797 |
Table 3
Accuracy and loss values of different models (pulic data set)"
模型 | 准确率/% | 损失值 | |||
训练集 | 验证集 | 训练集 | 验证集 | ||
小波时频图- Swin Transformer | 100.00 | 100.00 | 4.17e-05 | 1.01e-04 | |
短时傅里叶变换- Swin Transformer | 100.00 | 100.00 | 7.36e-05 | 3.57e-04 | |
小波时频图-ViT | 100.00 | 99.32 | 1.42e-04 | 2.82e-02 | |
小波时频图-2DCNN | 99.89 | 99.83 | 9.83e-03 | 9.02e-03 |
Table 4
Diesel engine technical indicators"
项目 | 指标 |
类型 | 四冲程、直列、水冷、高压共轨 |
尺寸/mm | 1 330×970×1 005 |
缸径×行程/mm | 107×125 |
型号 | 锡柴CA6DF3-20E3 |
共轨系统 | BOSCH电控共轨 |
净功率/kW | 147 |
额定功率/kW | 155 |
净重/kg | 700(不含离合器、中冷器) |
额定转速/(r/min) | 2 300 |
进气形式 | 增压中冷 |
单缸气门数/个 | 2 |
点火顺序 | 1-5-3-6-2-4 |
压缩比 | 17.4 |
总排量/L | 6.7 |
最大扭矩/NM | 760 |
最大马力/ps | 200 |
全负荷最低燃油功率/(g/kW·h) | ≤205 |
适配范围 | 8.5~11 m公路大中型人员运输车、12 t以上中重型载重运输车 |
Table 7
Accuracy and loss values of different models(laboratory measured data)"
模型 | 准确率/% | 损失值 | |||
训练集 | 验证集 | 训练集 | 验证集 | ||
小波时频图- Swin Transformer | 100.00 | 98.88 | 3.38e-04 | 3.99e-02 | |
短时傅里叶变换- Swin Transformer | 100.00 | 97.16 | 5.19e-04 | 1.19e-01 | |
小波时频图-ViT | 96.45 | 91.67 | 6.44e-02 | 2.08e-01 | |
小波时频图-2DCNN | 81.44 | 82.38 | 5.15e-01 | 5.24e-01 |
1 |
XU X J , YAN X P , SHENG C X , et al. A belief rule-based expert system for fault diagnosis of marine diesel engines[J]. IEEE Trans.on Systems Man Cybernetics-Systems, 2020, 50 (2): 656- 672.
doi: 10.1109/TSMC.2017.2759026 |
2 |
HOU L S , ZOU J Q , DU C J , et al. A fault diagnosis model of marine diesel engine cylinder based on modified genetic algorithm and multilayer perceptron[J]. Soft Computing, 2020, 24 (10): 7603- 7613.
doi: 10.1007/s00500-019-04388-3 |
3 |
LIU G , ZHOU X L , XU X L , et al. Fault diagnosis of diesel engine information fusion based on adaptive dynamic weighted hybrid distance-taguchi method (ADWHD-T)[J]. Applied Intelligence, 2022, 52 (9): 10307- 10329.
doi: 10.1007/s10489-021-02962-7 |
4 | KE Y , SONG E Z , CHEN Y Z , et al. Multiscale bidirectional diversity entropy for diesel injector fault-type diagnosis and fault degree diagnosis[J]. IEEE Trans.on Instrumentation and Measurement, 2022, 71, 6503410. |
5 |
CAI B P , SUN X T , WANG J X , et al. Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs[J]. Journal of Manufacturing Systems, 2020, 57, 148- 157.
doi: 10.1016/j.jmsy.2020.09.001 |
6 |
JING Y B , LIU C W , BI F R , et al. Diesel engine valve clea-rance fault diagnosis based on features extraction techniques and FastICA-SVM[J]. Chinese Journal of Mechanical Engineering, 2017, 30 (4): 991- 1007.
doi: 10.1007/s10033-017-0140-2 |
7 | RAMTEKE S M , CHELLADURAI H , AMARNATH M . Diagnosis of liner scuffing fault of a diesel engine via vibration and acoustic emission analysis[J]. Journal of Vibration Engineering & Technologies, 2020, 8 (6): 815- 833. |
8 |
BAI H J , ZHAN X B , YAN H , et al. Research on diesel engine fault diagnosis method based on stacked sparse autoencoder and support vector machine[J]. Electronics, 2022, 11 (14): 2249- 2267.
doi: 10.3390/electronics11142249 |
9 |
BI X B , LIN J S , TANG D J , et al. VMD-KFCM algorithm for the fault diagnosis of diesel engine vibration signals[J]. Energies, 2020, 13 (1): 228- 248.
doi: 10.3390/en13010228 |
10 |
白雲杰, 贾希胜, 梁庆海. 基于DVMD和SSAE的柴油机混合故障诊断[J]. 振动与冲击, 2022, 41 (11): 271-277, 297.
doi: 10.13465/j.cnki.jvs.2022.11.034 |
BAI Y J , JIA X S , LIANG Q H . Hybrid fault diagnosis of diesel engine based on DVMD and SSAE[J]. Journal of Vibration and Shock, 2022, 41 (11): 271-277, 297.
doi: 10.13465/j.cnki.jvs.2022.11.034 |
|
11 | 沈虹, 赵红东, 梅检民, 等. 基于高阶累积量图像特征的柴油机故障诊断研究[J]. 振动与冲击, 2015, 34 (11): 133- 138. |
SHEN H , ZHAO H D , MEI J M , et al. Diesel engine fault diagnosis based on high-order cumulant image features[J]. Journal of Vibration and Shock, 2015, 34 (11): 133- 138. | |
12 | 沈虹, 曾锐利, 杨万成, 等. 基于时频图像极坐标增强的柴油机故障诊断[J]. 振动、测试与诊断, 2018, 38 (1): 27-33, 203. |
SHEN H , ZENG R L , YANG W C , et al. Diesel engine fault diagnosis based on polar coordinate enhancement of time-frequency diagram[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38 (1): 27-33, 203. | |
13 | 牟伟杰, 石林锁, 蔡艳平, 等. 基于振动时频图像全局和局部特征融合的柴油机故障诊断[J]. 振动与冲击, 2018, 37 (10): 14-19, 49. |
MOU W J , SHI L S , CAI Y P , et al. Diesel engine fault diagnosis based on the global and local features fusion of time-frequency image[J]. Journal of Vibration and Shock, 2018, 37 (10): 14-19, 49. | |
14 |
LI Y B , SI S B , LIU Z L , et al. Review of local mean decomposition and its application in fault diagnosis of rotating machi-nery[J]. Journal of Systems Engineering and Electronics, 2019, 30 (4): 799- 814.
doi: 10.21629/JSEE.2019.04.17 |
15 | 侯召国, 王华伟, 周良, 等. 基于改进深度残差网络的旋转机械故障诊断[J]. 系统工程与电子技术, 2022, 44 (6): 2051- 2059. |
HOU Z G , WANG H W , ZHOU L , et al. Fault diagnosis of rotating machinery based on improved deep residual network[J]. Systems Engineering and Electronics, 2022, 44 (6): 2051- 2059. | |
16 | 马云飞, 贾希胜, 白华军, 等. 基于一维CNN参数优化的压缩振动信号故障诊断[J]. 系统工程与电子技术, 2020, 42 (9): 1911- 1919. |
MA Y F , JIA X S , BAI H J , et al. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters[J]. Systems Engineering and Electronics, 2020, 42 (9): 1911- 1919. | |
17 | TANG S N , YUAN S Q , ZHU Y . Convolutional neural network in intelligent fault diagnosis toward rotatory machinery[J]. IEEE Access, 2020, 8, 86510- 86519. |
18 | ZHENG H , WANG G H , LI X C . Swin-MLP: a strawberry appearance quality identification method by Swin Transformer and multi-layer perceptron[J]. Journal of Food Measurement and Characterization, 2022, 16 (4): 2789- 2800. |
19 | WANG Y T , XIE Y Z , FAN L S , et al. STMG: Swin Transformer for multi-label image recognition with graph convolution network[J]. Neural Computing & Applications, 2022, 34 (12): 10051- 10063. |
20 | JIA N , CHENG Y , LIU Y Y , et al. Intelligent fault diagnosis of rotating machines based on wavelet time-frequency diagram and optimized stacked denoising auto-encoder[J]. IEEE Sensors Journal, 2022, 22 (17): 17139- 17150. |
21 | XIONG G Q , MA W S , ZHAO N Y , et al. Multi-type diesel engines operating condition recognition method based on stacked auto-encoder and feature transfer learning[J]. IEEE Access, 2021, 9, 31043- 31052. |
22 | 卓德兵, 曹晖. 基于小波时频图与轻量级卷积神经网络的螺栓连接损伤识别[J]. 工程力学, 2021, 38 (9): 228- 238. |
ZHUO D B , CAO H . Damage identification of bolt connections based on wavelet time-frequency diagrams and lightweight convolutional neural networks[J]. Engineering Mechanics, 2021, 38 (9): 228- 238. | |
23 | SUN Q , YU X H , LI H S , et al. Fault detection for power electronic converters based on continuous wavelet transform and convolution neural network[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42 (4): 3537- 3549. |
24 | ZHU Y W , YAN Q S , LU J B . Fault diagnosis method for disc slitting machine based on wavelet packet transform and support vector machine[J]. International Journal of Computer Integrated Manufacturing, 2020, 33 (10): 1118- 1128. |
25 | 鄢仁武, 林穿, 高硕勋, 等. 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击, 2020, 39 (10): 198- 205. |
YAN R W , LIN C , GAO S X , et al. Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolution neural network[J]. Journal of Vibration and Shock, 2020, 39 (10): 198- 205. | |
26 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. |
27 | ZHOU K , TONG Y F , LI X T , et al. Exploring global attention mechanism on fault detection and diagnosis for complex engineering processes[J]. Process Safety and Environmental Protection, 2023, 170, 660- 669. |
28 | ZHANG L , SONG Z H , ZHANG Q H , et al. Generalized transformer in fault diagnosis of Tennessee Eastman process[J]. Neural Computing and Applications, 2022, 34 (11): 8575- 8585. |
29 | 赵鸣宇. 基于Swin Transformer的跳频调制信号时频图像分类研究[D]. 银川: 宁夏大学, 2022. |
ZHAO M Y . Research on time-frequency image classification of frequency hopping modulated signal based on Swin Transformer[J]. Yinchuan: Ningxia University, 2022, | |
30 | 扶兰兰, 黄昊, 王恒, 等. 基于Swin Transformer模型的玉米生长期分类[J]. 农业工程学报, 2022, 38 (14): 191- 200. |
FU L L , HUANG H , WANG H , et al. Classification of maize growth stages using the Swin Transformer model[J]. Trans.of the Chinese Society of Agricultural Engineering, 2022, 38 (4): 191- 200. | |
31 | 魏毓辰. 基于机器学习的肾脏肿瘤MRI图像分类算法[D]. 长春: 吉林大学, 2022. |
WEI Y C. MRI image classification algorithm of kidney tumor based on machine learning[D]. Changchun: Jilin University, 2022. | |
32 | LIANG J Y, CAO J Z, SUN G L, et al. Swinir: image restoration using Swin Transformer[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844. |
33 | LIU Z, HU H, LIN Y T, et al. Swin Transformer v2: scaling up capacity and resolution[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 12009-12019. |
34 | LIU Z, NING J, CAO Y, et al. Video Swin Transformer[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 3202-3211. |
35 | SMITH W A , RANDALL R B . Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical systems and signal processing, 2015, 64, 100- 131. |
[1] | Sheng GAO, Guangfu MA, Yanning GUO. Fast reconstruction of multiple faults based on adaptive unknown input observer [J]. Systems Engineering and Electronics, 2022, 44(7): 2364-2373. |
[2] | Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network [J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059. |
[3] | Ruifeng LI, Aiqiang XU, Weichao SUN, Shuyou WANG. Recommendation method for avionics feature selection algorithm basedon meta-learning [J]. Systems Engineering and Electronics, 2021, 43(7): 2011-2020. |
[4] | Li WANG, Ziqi LIU. Fault diagnosis of analog circuit for WPA-IGA-BP neural network [J]. Systems Engineering and Electronics, 2021, 43(4): 1133-1143. |
[5] | Jinling DAI, Aiqiang XU. Local multiple kernel extreme learning machine fault diagnosis model with dynamic fuzzy clustering for avionics [J]. Systems Engineering and Electronics, 2021, 43(3): 637-646. |
[6] | Chen MENG, Huahui YANG, Cheng WANG, Zheng MA. Review on data-driven fault diagnosis for electronic components and units level of weapon system [J]. Systems Engineering and Electronics, 2021, 43(2): 574-583. |
[7] | Yunfei MA, Xisheng JIA, Huajun BAI, Chiming GUO, Shuangchuan WANG. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters [J]. Systems Engineering and Electronics, 2020, 42(9): 1911-1919. |
[8] | Bo LI, Lin ZHANG, Wenfeng WANG, Guannan WANG. Fault feature extraction method based on Park-HHT [J]. Systems Engineering and Electronics, 2020, 42(12): 2944-2952. |
[9] | LIU Jiufu, ZHANG Zhiguo, ZHENG Rui, LIU Haiyang, YANG Zhong, WANG Zhisheng. Fault diagnosis of bipropellant propulsion system using partially observed time Petri nets [J]. Systems Engineering and Electronics, 2018, 40(6): 1337-1344. |
[10] | ZHU Wei, MA Weiming, YANG Xidang, XIAO Huan. Tracking control of ship borne quad-roto UAV based on robust fault diagnosis LPV model [J]. Systems Engineering and Electronics, 2018, 40(11): 2540-. |
[11] | WEI Zijie, CHEN Shengjian. Fault diagnosis for circuits with tolerance based on multifeature cloud relational matrix#br# [J]. Systems Engineering and Electronics, 2017, 39(12): 2665-2670. |
[12] | CHEN Yin-sheng, JIANG Shou-da, LIU Xiao-dong, YANG Jing-li, WANG Qi. Self-validating gas sensor fault diagnosis method based on EEMD sample entropy and SRC [J]. Systems Engineering and Electronics, 2016, 38(5): 1215-. |
[13] | ZHOU Meng, WANG Zhenhua, SHEN Yi, WANG Yan. Unknown input filter based fault diagnosis method for overactuated systems [J]. Systems Engineering and Electronics, 2016, 38(12): 2842-2848. |
[14] | GUO Jian-bin, JI Ding-fei, WANG Xin, ZENG Sheng-kui, ZHAO Jian-yu. Hybrid state estimation and fault diagnosis algorithm of hybrid systems using particle filter [J]. Systems Engineering and Electronics, 2015, 37(8): 1936-1942. |
[15] | JIN Yang, WANG Ri-xin, XU Min-qiang. Spacecraft autonomous fault diagnosis method based on state memory [J]. Systems Engineering and Electronics, 2015, 37(6): 1452-1458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||