Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (9): 2979-2985.doi: 10.12305/j.issn.1001-506X.2023.09.39
• Reliability • Previous Articles Next Articles
Shiyan SUN, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN
Received:2021-02-03
															
							
															
							
															
							
																	Online:2023-08-30
															
							
																	Published:2023-09-05
															
						Contact:
								Shiyan SUN   
																					CLC Number:
Shiyan SUN, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN. Construction method of rolling bearing health indicator based on enhanced restricted Boltzmann machine[J]. Systems Engineering and Electronics, 2023, 45(9): 2979-2985.
| 1 |  
											  MARCIA L B ,  ELSA M P H ,  KAI G .  More effective prognostics with elbow point detection and deep learning[J]. Mechanical Systems and Signal Processing, 2021, 146, 106987. 
																							 doi: 10.1016/j.ymssp.2020.106987  | 
										
| 2 |  
											  MENG M ,  ZHU M .  Deep-convolution-based LSTM network for remining useful life prediction[J]. IEEE Trans.on Industrial Informatics, 2021, 17 (3): 1658- 1667. 
																							 doi: 10.1109/TII.2020.2991796  | 
										
| 3 |  
											  SHE D M ,  JIA M P .  A BiGRU method for remaining useful life prediction of machinery[J]. Measurement, 2021, 167, 108277. 
																							 doi: 10.1016/j.measurement.2020.108277  | 
										
| 4 | 陆宁云, 陈闯, 姜斌, 等. 复杂系统维护策略最新研究进展: 从视情维护到预测性维护[J]. 自动化学报, 2021, 47 (1): 1- 17. | 
| LU N Y , CHEN C , JIANG B , et al. Latest progress on maintenance strategy of complex system: from condition-based maintenance to predictive maintenance[J]. Acta Automatica Sinca, 2021, 47 (1): 1- 17. | |
| 5 |  
											  LIU Q M ,  DONG M ,  LYU W Y , et al.  Manufacturing system maintenance based on dynamic programming model with prognostics information[J]. Journal of Intelligent Manufacturing, 2019, 30 (3): 1155- 1173. 
																							 doi: 10.1007/s10845-017-1314-6  | 
										
| 6 |  
											  ZHU J ,  CHEN N ,  SHEN C Q .  A new data-driven transferable remaining useful life prediction approach for bearing under diffe-rent working conditions[J]. Mechanical Systems and Signal Processing, 2020, 139, 106602. 
																							 doi: 10.1016/j.ymssp.2019.106602  | 
										
| 7 |  
											  WANG B ,  LEI Y G ,  LI N P , et al.  A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Trans.on Reliability, 2020, 69 (1): 401- 412. 
																							 doi: 10.1109/TR.2018.2882682  | 
										
| 8 |  
											  TIAN Q P ,  WANG H L .  An ensemble learning and RUL prediction method based on bearings degradation indicator construction[J]. Applied Sciences, 2020, 10 (1): 346- 368. 
																							 doi: 10.3390/app10010346  | 
										
| 9 | LOUKOPOULOS P , ZOLKIEWSKI G , BENNETT I , et al. Abrupt fault remaining useful life estimation using measurements from a reciprocating compressor valve failure[J]. Mechanical Systems and Signal Processing, 2019, 121 (2): 359- 372. | 
| 10 | PARIS P C , ERDOGAN F . A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering, 1963, 85, 528- 533. | 
| 11 |  
											  WANG J J ,  GAO R X ,  YUAN Z , et al.  A joint particle filter and expectation maximization approach to machine condition prognosis[J]. Journal of Intelligent Manufacturing, 2019, 30 (2): 605- 621. 
																							 doi: 10.1007/s10845-016-1268-0  | 
										
| 12 |  
											  LEI Y G ,  LI N ,  GONTARZ S , et al.  A model-based method for remaining useful life prediction of machinery[J]. IEEE Trans.on Reliability, 2016, 65 (3): 1314- 1326. 
																							 doi: 10.1109/TR.2016.2570568  | 
										
| 13 |  
											  LIAO L X .  Discovering prognostic features using genetic programming in remaining useful life prediction[J]. IEEE Trans.on Industrial Electronics, 2014, 61 (5): 2464- 2472. 
																							 doi: 10.1109/TIE.2013.2270212  | 
										
| 14 |  
											  CHAN K S ,  ENRIGHT M P ,  MOODY J P , et al.  Life prediction for turbopropulsion systems under dwell fatigue conditions[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134 (12) 
																							 doi: 10.1115/GT2012-69742  | 
										
| 15 |  
											  BARALDI P ,  MANGILI F ,  ZIO E .  Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[J]. Reliability Engineering and System Safety, 2013, 112, 94- 108. 
																							 doi: 10.1016/j.ress.2012.12.004  | 
										
| 16 | BARALDI P , MANGILI F , ZIO E . A Kalman filter-based ensemble approach with application to turbine creep prognostics[J]. IEEE Trans.on Reliability, 2012, 61 (3): 966- 977. | 
| 17 |  
											 彭志凌, 张毅, 丁明军, 等.  某供弹系统高速传动机构磨损机理分析与预测模型[J]. 中北大学学报(自然科学版), 2018, 39 (2): 155- 158. 
																							 doi: 10.3969/j.issn.1673-3193.2018.02.008  | 
										
|  
											  PENG Z L ,  ZHANG Y ,  DING M J , et al.  Analysis and prediction model of wear mechanism for high speed transmission mechanism of a missile system[J]. Journal of North University of China(Natural Science Edition), 2018, 39 (2): 155- 158. 
																							 doi: 10.3969/j.issn.1673-3193.2018.02.008  | 
										|
| 18 | KATRIN S , PHILIPPE C C , REINALD B . Automatic selection of a representative trial from multiple measurements using Principle Component Analysis[J]. Journal of Biomechanics, 2012, 45 (3): 2306- 2309. | 
| 19 | LI X Q , JIANG H K , XIONG X , et al. Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network[J]. Mechanism and Machine Theory, 2019, 133 (2): 229- 249. | 
| 20 | 孟文俊, 张四聪, 淡紫嫣, 等. 滚动轴承寿命动态预测新方法[J]. 振动、测试与诊断, 2019, 39 (3): 652- 658. | 
| MENG W J , ZHANG S C , DAN Z Y , et al. Method of dynamic life prediction of rolling bearing[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39 (3): 652- 658. | |
| 21 | 杨柯, 范世东. 基于长短期记忆网络时序数据趋势预测及应用[J]. 推进技术, 2021, (3): 675- 682. | 
| YANG K , FAN S D . Long short-term memory network based method and its application in time-series data trend prediction[J]. Journal Propulsion Technology, 2021, (3): 675- 682. | |
| 22 | SINGH J , DARPE A K , SINGH H P , et al. Bearing damage assessment using Jensen-Renyi divergence based on EEMD[J]. Mechanical Systems and Signal Processing, 2017, 87 (2): 307- 339. | 
| 23 | QIAN Y N , YAN R Q , GAO R X , et al. A multi-time scale approach to remaining useful life prediction in rolling bearing[J]. Mechanical Systems and Signal Processing, 2017, 83 (1): 549- 567. | 
| 24 | SHAO H D , JIANG H K , LI X Q , et al. Rolling bearing fault detection using continuous deep belief network with locally linear embedding[J]. Computers in Industry, 2018, 96 (3): 27- 39. | 
| 25 | ZHANG N , DING S F , ZHANG J , et al. An overview on restric-ted Boltzmann machines[J]. Neurocomputing, 2018, 275 (1): 1186- 1199. | 
| 26 | LI C , SANCHEZ R V , ZURITA G , et al. Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis[J]. Neurocomputing, 2015, 168 (2): 119- 127. | 
| 27 | LI C , SANCHEZ R V , ZURITA G , et al. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals[J]. Mechanical Systems and Signal Processing, 2016, 76 (2): 283- 293. | 
| 28 | ZHANG L , GAO H L , WEN J , et al. A deep learning-based recognition method for degradation monitoring of ball screw with multi-sensor data fusion[J]. Microelectronics Reliability, 2017, 75, 215- 222. | 
| 29 | NECTOX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]//Proc. of the IEEE International Confe-rence on Prognostics and Health Management, 2012. | 
| 30 | 张钢, 田福庆, 佘博, 等. 一种基于特定频段信息熵和RBM的健康因子构建方法[J]. 振动与冲击, 2020, 39 (6): 147- 153. | 
| ZHANG G , TIAN F Q , SHE B , et al. Health indicator construction method based on the information entropy of a specific frequency band and the RBM[J]. Journal of Vibration and Shock, 2020, 39 (6): 147- 153. | 
| [1] | Mingqian LIU, Zhongqiu XU, Tiancheng CHEN, Bingchen ZHANG, Yirong WU. Low oversampling Staggered SAR imaging method based on L1 & TV regularization [J]. Systems Engineering and Electronics, 2023, 45(9): 2718-2726. | 
| [2] | Zhuling QIU, Yufei ZHA, Zhenyu LI, Yuming LI, Peng ZHANG, Chuan ZHU. Temporal regularized correlation filter tracking algorithm based on multi-model distillation [J]. Systems Engineering and Electronics, 2022, 44(8): 2448-2456. | 
| [3] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. | 
| [4] | Shuai WANG, Jianjun XIANG, Fang PENG, Shujuan TANG. Target tracking algorithm based on a new steepest descent method [J]. Systems Engineering and Electronics, 2022, 44(5): 1512-1519. | 
| [5] | Ge LIU, Guosheng RUI, Wenbiao TIAN. Missing data recovery based on double regularization matrix decomposition [J]. Systems Engineering and Electronics, 2021, 43(5): 1191-1197. | 
| [6] | Yingxin ZHAO, Changfeng WANG, Hong WU, Ming ZHANG, Yingjie HUANG, Legeng WANG, Zhiyang LIU. Channel estimation algorithm based on compressed sensing with maximizing negative entropy [J]. Systems Engineering and Electronics, 2021, 43(4): 1126-1132. | 
| [7] | Jingfeng LI, Yunxiang CHEN, Huachun XIANG, Zhongyi CAI. Remaining useful life prediction for aircraft engine based on LSTM-DBN [J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644. | 
| [8] | Ce JI, Xiaomeng ZHANG. Regularization orthogonal matching pursuit based on multiple support [J]. Systems Engineering and Electronics, 2020, 42(4): 756-763. | 
| [9] | Shiyan SUN, Gang ZHANG, Fuqing TIAN, Weige LIANG. Health indicator construction method of multi-input hybrid deep learning network [J]. Systems Engineering and Electronics, 2020, 42(10): 2390-2398. | 
| [10] | Gang ZHANG, Fuqing TIAN, Weige LIANG, Bo SHE. Construction method of bearing health indicator based on multi-scale AlexNet network [J]. Systems Engineering and Electronics, 2020, 42(1): 245-252. | 
| [11] | YE Xia, YANG Shujie. Improved mixed regularization constrained multiframe turbulence degradation image blind restoration [J]. Systems Engineering and Electronics, 2018, 40(9): 2138-2142. | 
| [12] | BI Duyan, WANG Shiping, LIU Kun, HE Linyuan. Super-resolution algorithm based on parallel mapping convolution network [J]. Systems Engineering and Electronics, 2018, 40(8): 1873-1880. | 
| [13] | JI Yuanfa, ZHU Liangliang, SUN Xiyan, YAN Suqing. Differential evolution algorithm with regularization to solve illposed equations [J]. Systems Engineering and Electronics, 2018, 40(7): 1573-1577. | 
| [14] | XU Zhigang, LI Wenwen, YUAN Feixiang, ZHU Honglei, XU Yamei. Super-resolution reconstruction based on sparse representation and multicomponent dictionaries learning [J]. Systems Engineering and Electronics, 2018, 40(3): 699-703. | 
| [15] | ZHANG Wei, XU Aiqiang, PING Dianfa. Nonlinear system online identification based on kernel sparse learning#br# algorithm with adaptive regulation factor [J]. Systems Engineering and Electronics, 2017, 39(1): 223-230. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||