Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (10): 2390-2398.doi: 10.3969/j.issn.1001-506X.2020.10.30
Previous Articles Next Articles
Shiyan SUN*(), Gang ZHANG(
), Fuqing TIAN(
), Weige LIANG(
)
Received:
2020-01-09
Online:
2020-10-01
Published:
2020-09-19
Contact:
Shiyan SUN
E-mail:ssy9751119@163.com;782045624@qq.com;tianfq001@126.com;Lwinger@outlook.com
CLC Number:
Shiyan SUN, Gang ZHANG, Fuqing TIAN, Weige LIANG. Health indicator construction method of multi-input hybrid deep learning network[J]. Systems Engineering and Electronics, 2020, 42(10): 2390-2398.
Table 1
Parameters of hybrid deep learning network"
网络层 | 参数 | ||||
输入图像大小/(像素×像素) | 通道数/个 | 卷积核大小/(个×个) | 步长/单元 | 单元数/个 | |
输入层 | [100×100] | 3 | - | - | - |
卷积层1 | - | 96 | [11×11] | 4 | - |
池化层1 | - | 96 | [3×3] | 2 | - |
卷积层2 | - | 256 | [5×5] | 1 | - |
池化层2 | - | 256 | [3×3] | 2 | - |
卷积层3 | - | 384 | [3×3] | 1 | - |
卷积层4 | - | 384 | [3×3] | 1 | - |
卷积层5 | - | 256 | [3×3] | 1 | - |
池化层5 | - | 256 | [3×3] | 2 | - |
CNN展平层 | - | 7 424(6 400+1 024) | - | - | - |
LSTM层1 | - | - | - | - | 80 |
LSTM层2 | - | - | - | - | 60 |
LSTM层3 | - | - | - | - | 30 |
LSTM展平层 | - | - | - | - | 30 |
CNN+LSTM连接层 | - | - | - | - | 7 454(7 424+30) |
全连接层1 | - | 4 096 | - | - | - |
全连接层2 | - | 1 000 | - | - | - |
输出层 | - | 1 | - | - | - |
Table 2
Health indicator evaluation results"
轴承 | RMS | PCA | ELM-AE | SDAE-SOM | HYB-HI | ||||||||||||||
趋势性 | 单调性 | 离散性 | 趋势性 | 单调性 | 离散性 | 趋势性 | 单调性 | 离散性 | 趋势性 | 单调性 | 离散性 | 趋势性 | 单调性 | 离散性 | |||||
Bearing1_3 | 0.77 | 0.14 | 0.15 | 0.78 | 0.15 | 0.56 | 0.77 | 0.14 | 0.44 | 0.67 | 0.12 | 0.62 | 0.96 | 0.88 | 0.40 | ||||
Bearing1_4 | 0.32 | 0.16 | 0.33 | 0.32 | 0.15 | 0.53 | 0.31 | 0.15 | 0.70 | 0.41 | 0.17 | 0.76 | 0.95 | 0.78 | 0.58 | ||||
Bearing1_5 | 0.16 | 0.12 | 0.21 | 0.23 | 0.11 | 0.66 | 0.28 | 0.12 | 0.63 | 0.26 | 0.14 | 0.55 | 0.93 | 0.77 | 0.48 | ||||
Bearing1_6 | 0.10 | 0.10 | 0.12 | 0.16 | 0.11 | 0.72 | 0.18 | 0.11 | 0.86 | 0.31 | 0.13 | 0.79 | 0.86 | 0.53 | 0.60 | ||||
Bearing1_7 | 0.23 | 0.11 | 0.26 | 0.33 | 0.13 | 0.61 | 0.34 | 0.10 | 0.77 | 0.35 | 0.14 | 0.58 | 0.95 | 0.87 | 0.57 |
Table 3
Remaining useful life prediction results"
测试数据集 | 当前时刻/s | 实际剩余寿命/s | 预测剩余寿命/s | ||||||
HYB-HI | RMS | PCA | ELM-AE | LSTM-HI | CNN-HI | SOM-HI | |||
Bearing1_3 | 18 010 | 5 730 | 4 752 | 5 970 | 3 250 | 4 683 | 3 250 | 4 731 | 5 790 |
Bearing1_4 | 11 390 | 2 900 | 2 170 | 1 200 | 1 100 | 2 438 | 1 100 | 2 590 | 410 |
Bearing1_5 | 23 010 | 1 610 | 1 210 | 5 040 | 1 980 | 4 237 | 1 980 | 3 996 | 6 080 |
Bearing1_6 | 23 010 | 1 460 | 1 230 | 1 230 | 1 150 | 1 848 | 1 150 | 1 744 | 1 180 |
Bearing1_7 | 15 010 | 7 570 | 7 050 | 9 120 | 6 220 | 6 035 | 6 220 | 6 090 | 8 110 |
MAE | - | - | 571.6 | 1 430 | 1 262 | 1 211.8 | 1 262 | 1 091.8 | 1 568 |
NRMSE | - | - | 0.191 4 | 0.410 7 | 0.552 2 | 0.380 5 | 0.552 2 | 0.351 4 | 0.534 2 |
1 |
INSUN S , JUNMIN L , JUM Y L , et al. A framework for prognostics and health management applications toward smart manufacturing systems[J]. International Journal of Precision Engineering and Manufacturing-green Technology, 2018, 5 (4): 535- 554.
doi: 10.1007/s40684-018-0055-0 |
2 |
LIN Y H , LI X D , HU Y , et al. Deep diagnostics and prognostics: an integrated hierarchical learning framework in PHM applications[J]. Applied Soft Computing, 2018, 72, 555- 564.
doi: 10.1016/j.asoc.2018.01.036 |
3 |
LEI Y G , LI N P , GUO L , et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104, 799- 834.
doi: 10.1016/j.ymssp.2017.11.016 |
4 |
ZHAO R , YAN R Q , CHEN Z H , et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115, 213- 237.
doi: 10.1016/j.ymssp.2018.05.050 |
5 | 丁红卫, 万良, 龙廷艳. 深度自编码网络在入侵检测中的应用研究[J]. 哈尔滨工业大学学报, 2019, 51 (5): 185- 194. |
DING H W , WAN L , LONG T Y . Rearch on the application of deep auto-encoder network in intrusion detection[J]. Journal of Harbin Institute of Technology, 2019, 51 (5): 185- 194. | |
6 |
GUO L , LI N P , JIA F , et al. A recurrent neural network based health indicator for remaining useful life prediction[J]. Neurocomputing, 2017, 240, 98- 109.
doi: 10.1016/j.neucom.2017.02.045 |
7 | TANG G, ZHOU Y G, WANG H Q, et al. Prediction of bearing performance degradation with bottleneck fearure based on LSTM network[C]//Proc.of the IEEE International Instrumentation and Measurement Technology Conference, 2018. |
8 | REN L , SUN Y Q , WANG H , et al. Prediction of bearing remaining useful life with deep concolutional neural network[J]. Special Section on Cyber-physical-social Computing and Networking, 2018, 6, 13041- 13049. |
9 |
YOO Y J , BAEK J G . A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network[J]. Applied Sciences, 2018, 8, 1102- 1119.
doi: 10.3390/app8071102 |
10 | ZHAO R , YAN R Q , WANG J J , et al. Learning to monitor machine health with convolutional bi-directional Lstm networks[J]. Sensors, 2017, 17 (2): 273- 290. |
11 |
HINCHI A Z , TKIOUAT M . Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J]. Procedia Computer Science, 2018, 127, 123- 132.
doi: 10.1016/j.procs.2018.01.106 |
12 | GERS F A , SCHRAUDOLPH N N , SCHMIDHUBER J . Learning precise timing with LSTM recurrent networks[J]. Journal of Machince Learning Rearch, 2002, 3, 115- 143. |
13 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proc.of the Neural Information Processing Systems, 2012: 1097-1105. |
14 | NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]//Proc.of the IEEE International Conference on Prognostics and Health Management, 2012. |
15 |
ALI A D , SOHEIL Z , AMIR A , et al. A multimodal and hybrid deep neural network model for remaining useful life estimation[J]. Computers in Industrial, 2019, 108, 186- 196.
doi: 10.1016/j.compind.2019.02.004 |
16 | KRIZHEVSKY A , SUTSKEVER I , HINTON G . Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25 (2): 1097- 1105. |
17 | 赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018, 39 (6): 82- 88. |
ZHAO G Q , LIU X Y , JIANG Z D , et al. Unsupervised health indicator of bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2018, 39 (6): 82- 88. | |
18 | HU Y, PALME T, FINK O. Deep health indicator extraction: a method based on auto-encoders and extreme learning machines[C]//Proc.of the Annual Conference of the Prognostics and Health Management Society, 2016. |
[1] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[2] | Limin ZHANG, Kaiwen TAN, Wenjun YAN, Yuyuan ZHANG. Radar emitter recognition based on multi-level jumper residual network [J]. Systems Engineering and Electronics, 2022, 44(7): 2148-2156. |
[3] | Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network [J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822. |
[4] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[5] | Hong ZOU, Chenyang BAI, Peng HE, Yaping CUI, Ruyan WANG, Dapeng WU. Edge service placement strategy based on distributed deep learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1728-1737. |
[6] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[7] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[8] | Yunxiang YAO, Ying CHEN. Target tracking network based on dual-modal interactive fusion under attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 410-419. |
[9] | Yongxing GAO, Xudong WANG, Ling WANG, Daiyin ZHU, Jun GUO, Fanwang MENG. Weather signal detection for dual polarization weather radar based on RCNN [J]. Systems Engineering and Electronics, 2022, 44(11): 3380-3387. |
[10] | Yiheng ZHOU, Jun YANG, Saiqiang XIA, Mingjiu LYU. Estimation method of micro-motion parameters for rotor targets under flashing [J]. Systems Engineering and Electronics, 2022, 44(1): 54-63. |
[11] | Rong FU, Tianyao HUANG, Yimin LIU. DNN based 1-bit block sparse recovery in frequency agile coherent radar [J]. Systems Engineering and Electronics, 2022, 44(1): 70-75. |
[12] | Yuyuan ZHANG, Limin ZHANG, Wenjun YAN. SFBC-OFDM recognition method based on cross-correlation feature map and dilated dense convolutional neural networks [J]. Systems Engineering and Electronics, 2021, 43(9): 2657-2664. |
[13] | Caiyun WANG, Yangyu LI, Xiaofei LI, Jianing WANG, Wenyi WEI. Aerial image super-resolution restruction based on sparsity and deep learning [J]. Systems Engineering and Electronics, 2021, 43(8): 2045-2050. |
[14] | Yueping HUANG, Xiaofeng LI, Xiaogang YANG, Naixin QI, Ruitao LU, Shengxiu ZHANG. Advances in visual object tracking algorithm based on correlation filter [J]. Systems Engineering and Electronics, 2021, 43(8): 2051-2065. |
[15] | Bin WANG, Guoyu WANG. Instantaneous coastline automatic extraction algorithm for SAR images based on improved deep learning network [J]. Systems Engineering and Electronics, 2021, 43(8): 2108-2115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||