Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (9): 2718-2726.doi: 10.12305/j.issn.1001-506X.2023.09.09
• Sensors and Signal Processing • Previous Articles Next Articles
Mingqian LIU1,2,3,*, Zhongqiu XU1,2,3, Tiancheng CHEN1,2,3, Bingchen ZHANG1,2,3, Yirong WU1,2
Received:
2022-01-13
Online:
2023-08-30
Published:
2023-09-05
Contact:
Mingqian LIU
CLC Number:
Mingqian LIU, Zhongqiu XU, Tiancheng CHEN, Bingchen ZHANG, Yirong WU. Low oversampling Staggered SAR imaging method based on L1 & TV regularization[J]. Systems Engineering and Electronics, 2023, 45(9): 2718-2726.
Table 1
Low oversampling staggered SAR imaging method based on L1 & TV regularization pseudocode"
输入 二维回波数据Y, 场景的稀疏度K, 迭代步长参数δ, 最大迭代步数kmax, 误差参数ε, 拉格朗日乘子ξ1, ξ2, 图像大小N, 噪声方差σ |
初始化 X(0)=0, k=0, dp=(0, 0), z1(0)=0, z2(0)=0 |
迭代 while k < kmax & & Res>ε |
1. |
2. λ1(k + 1)=2ξ1(|X(k + 1)|K + 1) |
3. |
4. |
5. |
6. |
7. z2(k + 1)=sign(X(k + 1))(|X(k + 1)|-λTVdiv(dp(k + 1))) |
8. Res=‖X(k+1)-X(k)‖2/‖X(k)‖2 |
9. k=k+1 |
end while |
输出 重构后的图像X(k) |
1 |
KRIEGER G , MOREIRA A . Spaceborne bi-and multistatic SAR: potential and challenges[J]. IET Proceedings Radar, Sonar and Navigation, 2006, 153 (3): 184- 198.
doi: 10.1049/ip-rsn:20045111 |
2 | CURRIE A , BROWN M A . Wide-swath SAR[J]. Radar & Signal Processing IEE Proceedings F, 1992, 139 (2): 122- 135. |
3 |
SIKANETA I , GIERULL C H , CERUTTI-MAORI D . Optimum signal processing for multichannel SAR: with application to high-resolution wide-swath imaging[J]. IEEE Trans.on Geo-science and Remote Sensing, 2014, 52 (10): 6095- 6109.
doi: 10.1109/TGRS.2013.2294940 |
4 |
KRIEGER G , GEBERT N , MOREIRA A . Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1 (4): 260- 264.
doi: 10.1109/LGRS.2004.832700 |
5 |
KRIEGER G . MIMO-SAR: opportunities and pitfalls[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (5): 2628- 2645.
doi: 10.1109/TGRS.2013.2263934 |
6 |
YOUNIS M , FISCHER C , WIESBECK W . Digital beamforming in SAR systems[J]. IEEE Trans.on Geoscience and Remote Sensing, 2003, 41 (7): 1735- 1739.
doi: 10.1109/TGRS.2003.815662 |
7 | GEBERT N, KRIEGER G. Ultra-wide swath SAR imaging with continuous PRF variation[C]//Proc. of the 8th European Conference on Synthetic Aperture Radar, 2010. |
8 | VILLANO M, KRIEGER G, MOREIRA A. Staggered-SAR for high-resolution wide-swath imaging[C]//Proc. of the IET International Conference on Radar Systems, 2012. |
9 | VILLANO M, KRIEGER G. Staggered SAR: from concept to experiments with real data[C]//Proc. of the 10th European Conference on Synthetic Aperture Radar, 2014. |
10 |
VILLANO M , KRIEGER G , MOREIRA A . Onboard processing for data volume reduction in high-resolution wide-swath SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (8): 1173- 1177.
doi: 10.1109/LGRS.2016.2574886 |
11 |
HUBER S , DE-ALMEIDA F Q , VILLANO M , et al. Tandem-L: a technical perspective on future spaceborne SAR sensors for earth observation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (8): 4792- 4807.
doi: 10.1109/TGRS.2018.2837673 |
12 |
VILLANO M , KRIEGER G , MOREIRA A . Staggered SAR: high-resolution wide-swath imaging by continuous PRI variation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (7): 4462- 4479.
doi: 10.1109/TGRS.2013.2282192 |
13 |
PINHEIRO M , PRATS-IRAOLA P , RODRIGUEZ-CASSOLA M , et al. Analysis of low-oversampled staggered SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 241- 255.
doi: 10.1109/JSTARS.2019.2959092 |
14 | ZHOU Z X , DENG Y K , WANG W , et al. Linear Bayesian approaches for low-oversampled stepwise staggered SAR data[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 5206123. |
15 |
WANG X Y , WANG R , DENG Y K , et al. SAR signal reco-very and reconstruction in staggered mode with low oversampling factors[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (5): 704- 708.
doi: 10.1109/LGRS.2018.2805311 |
16 | STOICA P , LI J , HE H . Spectral analysis of nonuniformly sampled data: a new approach versus the periodogram[J]. IEEE Trans.on Signal Processing, 2008, 57 (3): 843- 858. |
17 |
YARDIBI T , LI J , STOICA P , et al. Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Trans.on Aerospace and Electronic Systems, 2010, 46 (1): 425- 443.
doi: 10.1109/TAES.2010.5417172 |
18 |
ZHANG B C , HONG W , WU Y R . Sparse microwave imaging: principles and applications[J]. Science China (Information Sciences), 2012, 55 (8): 1722- 1754.
doi: 10.1007/s11432-012-4633-4 |
19 |
CETIN M , STOJANOVIC I , ONHON N O , et al. Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31 (4): 27- 40.
doi: 10.1109/MSP.2014.2312834 |
20 | 吴一戎, 洪文, 张冰尘. 稀疏微波成像导论[M]. 北京: 科学出版社, 2018. |
WU Y R , HONG W , ZHANG B C . Introduction to sparse microwave imaging[M]. Beijing: China Science Publishing & Media Ltd., 2018. | |
21 |
FANG J , XU Z B , ZHANG B C , et al. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (1): 352- 363.
doi: 10.1109/JSTARS.2013.2263309 |
22 | XU Z Q , LIU M Q , ZHOU G R , et al. An accurate sparse SAR imaging method for enhancing region-based features via nonconvex & TV regularization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 20322543. |
23 | 徐志林, 魏中浩, 吴辰阳, 等. 基于l1正则化的多通道滑动聚束SAR成像[J]. 系统工程与电子技术, 2019, 41 (2): 304- 310. |
XU Z L , WEI Z H , WU C Y , et al. Multichannel sliding spotlight SAR imaging based on l1 regularization[J]. Systems Engineering and Electronics, 2019, 41 (2): 304- 310. | |
24 |
BI H , ZHANG B C , ZHU X X , et al. Extended chirp scaling-baseband azimuth scaling-based azimuth-range decouple L1 re-gularization for TOPS SAR imaging via CAMP[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (7): 3748- 3763.
doi: 10.1109/TGRS.2017.2679129 |
25 |
QUAN X Y , ZHANG B C , ZHU X X , et al. Unambiguous SAR imaging for nonuniform DPC sampling: $\ell_{q}$ regularization method using filter bank[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (11): 1596- 1600.
doi: 10.1109/LGRS.2016.2596902 |
26 |
YANG X Y , LI G , SUN J P , et al. High-resolution and wide-swath SAR imaging via Poisson disk sampling and iterative shrinkage thresholding[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (7): 4692- 4704.
doi: 10.1109/TGRS.2019.2892471 |
27 | CHAMBOLLE A. Total variation minimization and a class of binary MRF models[C]//Proc. of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2005: 136-152. |
28 |
CHAMBOLLE A . An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20 (1/2): 89- 97.
doi: 10.1023/B:JMIV.0000011321.19549.88 |
29 |
RANEY R K , RUNGE H , BAMLER R , et al. Precision SAR processing using chirp scaling[J]. IEEE Trans.on Geoscience and Remote Sensing, 1994, 32 (4): 786- 799.
doi: 10.1109/36.298008 |
30 |
FREEMAN A . SAR calibration: an overview[J]. IEEE Trans.on Geoscience and Remote Sensing, 1992, 30 (6): 1107- 1121.
doi: 10.1109/36.193786 |
[1] | Zhongbao WANG, Kuiying YIN. Block effect suppression method of UAV-borne SAR image based on joint domain filtering [J]. Systems Engineering and Electronics, 2023, 45(9): 2768-2776. |
[2] | Ning WANG, Pengchao HE, Jingyue LU, Xi LIU. DOA estimation based imaging method for multi-channel forward-looking SAR [J]. Systems Engineering and Electronics, 2023, 45(8): 2471-2478. |
[3] | Pengfei WANG, Hengyi ZHAN, Hongzhong SUN. Two-dimensional spatial-variant compensation frequency domain imaging method for bistatic forward-looking radar [J]. Systems Engineering and Electronics, 2023, 45(7): 1990-2001. |
[4] | Junpeng WANG, Shiqi XING, Yongzhen LI, Datong HUANG, Shaoqiu SONG. FMCW SAR jamming method research based on time-frequency cross [J]. Systems Engineering and Electronics, 2023, 45(6): 1651-1657. |
[5] | Dongdong ZHANG, Chunping WANG, Qiang FU. Ship target detection in SAR image based on feature-enhanced network [J]. Systems Engineering and Electronics, 2023, 45(4): 1032-1039. |
[6] | Xianghai LI, Zhiwei YANG, Shun HE, Guisheng LIAO, Chaolei HAN, Yan JIANG. Method for SAR-GMTI moving target radial velocity estimation and relocation based on road network information assistance in multi-satellite formation system [J]. Systems Engineering and Electronics, 2023, 45(3): 629-637. |
[7] | Tian MIAO, Hongcheng ZENG, He WANG, Jie CHEN. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data [J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768. |
[8] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[9] | Dongning FU, Guisheng LIAO, Yan HUANG, Bangjie ZHANG, Xing WANG. Time-varying narrow-band interference suppression algorithm for SAR based on graph Laplacian embedding [J]. Systems Engineering and Electronics, 2022, 44(6): 1846-1853. |
[10] | Minghui GAI, Su ZHANG, Weitian SUN, Yude NI, Lei YANG. Structural-feature enhancement of SAR targets based on complex value compatible total variation [J]. Systems Engineering and Electronics, 2022, 44(6): 1862-1872. |
[11] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[12] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[13] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[14] | Junjie WANG, Dejun FENG, Weidong HU. Two-dimensional SAR image modulation method based on time-varying materials [J]. Systems Engineering and Electronics, 2022, 44(2): 455-462. |
[15] | Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking [J]. Systems Engineering and Electronics, 2022, 44(2): 470-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||