Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (2): 470-479.doi: 10.12305/j.issn.1001-506X.2022.02.15
• Sensors and Signal Processing • Previous Articles Next Articles
Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG*
Received:
2020-12-31
Online:
2022-02-18
Published:
2022-02-24
Contact:
Lei YANG
CLC Number:
Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking[J]. Systems Engineering and Electronics, 2022, 44(2): 470-479.
Table 1
Classification results statistics of MAB-ADMM"
类别 | 分类方法 | |||||||||||||
PCANet算法 | 特征增强参数1 | 特征增强参数2 | 特征增强参数3 | 三组参数综合结果 | ||||||||||
误分类数 | 准确率/% | 误分类数 | 准确率/% | 误分类数 | 准确率/% | 误分类数 | 准确率/% | 误分类数 | 准确率/% | |||||
SN9563 | 25 | 87.18 | 13 | 93.33 | 14 | 92.82 | 14 | 92.82 | 9 | 95.38 | ||||
SN9566 | 47 | 76.02 | 42 | 78.57 | 37 | 81.12 | 33 | 83.16 | 28 | 85.71 | ||||
SNC21 | 40 | 79.59 | 36 | 81.63 | 30 | 84.69 | 35 | 82.14 | 27 | 86.22 | ||||
SNC71 | 0 | 100.0 | 0 | 100.0 | 0 | 100.0 | 0 | 100.0 | 0 | 100.0 | ||||
SN132 | 29 | 85.20 | 22 | 87.76 | 20 | 89.80 | 19 | 90.31 | 12 | 93.88 | ||||
SN812 | 13 | 93.33 | 6 | 96.92 | 8 | 95.90 | 8 | 95.90 | 4 | 97.95 | ||||
SNS7 | 16 | 91.62 | 10 | 95.29 | 12 | 93.72 | 11 | 94.245 | 8 | 95.81 | ||||
合计 | 170 | 87.55 | 129 | 90.55 | 121 | 91.14 | 120 | 91.21 | 88 | 93.55 |
1 | 张璘, 姜义成. 基于速度合成孔径雷达的海面舰船动目标成像方法[J]. 系统工程与电子技术, 2020, 42 (1): 45- 51. |
ZHANG L , JIANG Y C . Imaging of moving surface ships based on velocity synthetic aperture radar[J]. Systems Engineering and Electronics, 2020, 42 (1): 45- 51. | |
2 |
LIU A F , WANG F , XU H , et al. N-SAR: a new multichannel multimode polarimetric airborne SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (9): 3155- 3166.
doi: 10.1109/JSTARS.2018.2848945 |
3 |
ZHANG Y , XIONG W , DONG X C , et al. A novel azimuth spectrum reconstruction and imaging method for moving targets in geosynchronous spaceborne-airborne bistatic multichannel SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (8): 5976- 5991.
doi: 10.1109/TGRS.2020.2974531 |
4 |
CHEN L P , AN D X , HUANG X T . Extended autofocus backprojection algorithm for low-frequency SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (8): 1323- 1327.
doi: 10.1109/LGRS.2017.2711005 |
5 |
KANG M S , KIM K T . Ground moving target imaging based on compressive sensing framework with single-channel SAR[J]. IEEE Sensors Journal, 2020, 20 (3): 1238- 1250.
doi: 10.1109/JSEN.2019.2947114 |
6 |
PENG X M , TAN W X , HONG W , et al. Airborne DLSLA 3-D SAR image reconstruction by combination of polar formatting and L1 regularization[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (1): 213- 226.
doi: 10.1109/TGRS.2015.2453202 |
7 |
蒋留兵, 黄韬, 沈翰宁, 等. 基于局部随机化哈达玛矩阵的正交多匹配追踪算法[J]. 系统工程与电子技术, 2013, 35 (5): 914- 919.
doi: 10.3969/j.issn.1001-506X.2013.05.03 |
JIANG L B , HUANG T , SHEN H N , et al. Orthogonal multi-matching pursuit algorithm based on local randomized Hadamard matrix[J]. Systems Engineering and Electronics, 2013, 35 (5): 914- 919.
doi: 10.3969/j.issn.1001-506X.2013.05.03 |
|
8 | 杨磊, 岳云泽, 李埔丞, 等. 多地面运动目标大动态SAR成像稀疏表示[J]. 西安电子科技大学学报, 2019, 46 (5): 31- 40. |
YANG L , YUE Y Z , LI P C , et al. Sparse representation of multi-ground moving targets in large dynamic SAR imaging[J]. Journal of Xidian University, 2019, 46 (5): 31- 40. | |
9 | 赵克祥, 毕辉, 张冰尘. 基于快速阈值迭代的SAR层析成像处理方法[J]. 系统工程与电子技术, 2017, 39 (5): 1019- 1023. |
ZHAO K X , BI H , ZHANG B C . SAR tomography method based on fast iterative shrinkage-thresholding[J]. Systems Engineering and Electronics, 2017, 39 (5): 1019- 1023. | |
10 | STEPHEN B , NEAL P , CHU E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3 (1): 1- 122. |
11 |
杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41 (12): 2826- 2835.
doi: 10.11999/JEIT190173 |
YANG L , LI P C , LI H J , et al. Robust and efficient general SAR image sparse feature enhancement algorithm[J]. Journal of Electronics and Information Technology, 2019, 41 (12): 2826- 2835.
doi: 10.11999/JEIT190173 |
|
12 |
YUAN M , LIN Y . Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society Series B, 2006, 68, 49- 67.
doi: 10.1111/j.1467-9868.2005.00532.x |
13 | 杨磊, 李慧娟, 黄博, 等. 双层稀疏组LASSO高分辨SAR结构特征增强成像[J]. 系统工程与电子技术, 2021, 43 (2): 351- 362. |
YANG L , LI H J , HUANG B , et al. High resolution SAR imagery with structural feature enhancement under two-layer sparse group LASSO[J]. Systems Engineering and Electronics, 2021, 43 (2): 351- 362. | |
14 | TANG C M , LIU X L , LI Y J , et al. Morphology operators construction by adaptive elliptical structuring elements based on nonlinear structure tensor[J]. Journal of Physics: Conference Series, 2017, 787 (1): 012021. |
15 | HARALICK R M , STERNBERG S R , ZHUANG X . Image analysis using mathematical morphology[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1987, 9 (4): 532- 550. |
16 |
CHEN M , LIU D Y , QIAN K J , et al. Lunar crater detection based on terrain analysis and mathematical morphology methods using digital elevation models[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (7): 3681- 3692.
doi: 10.1109/TGRS.2018.2806371 |
17 |
LIU L Y , JIA Z H , YANG J , et al. SAR image change detection based on mathematical morphology and the K-means clustering algorithm[J]. IEEE Access, 2019, 7, 43970- 43978.
doi: 10.1109/ACCESS.2019.2908282 |
18 |
SGHAIER M O , FOUCHER S , LEPAGE R . River extraction from high-resolution SAR images combining a structural feature set and mathematical morphology[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (3): 1025- 1038.
doi: 10.1109/JSTARS.2016.2609804 |
19 |
ZARANDY A , STOFFELS A , ROSKA T , et al. Implementation of binary and gray-scale mathematical morphology on the CNN universal machine[J]. IEEE Trans.on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 1998, 45 (2): 163- 168.
doi: 10.1109/81.661683 |
20 |
ZHANG A Q , JI T Y , LI M S , et al. An identification method based on mathematical morphology for sympathetic inrush[J]. IEEE Trans.on Power Delivery, 2018, 33 (1): 12- 21.
doi: 10.1109/TPWRD.2016.2590479 |
21 |
ZHAO H M , LIU H D , XU J J , et al. Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 69 (7): 4165- 4172.
doi: 10.1109/TIM.2019.2948414 |
22 | ZHANG W B, WANG H J, TENG R J, et al. Application of adaptive structure element for generalized morphological filtering in vibratio signal de-noising[C]//Proc. of the 3rd International Congress on Image and Signal Processing, 2010: 3313-3317. |
23 | 葛世国. 基于数学形态学的遥感图像分割算法研究[D]. 成都: 成都理工大学, 2014. |
GE S G. Research on remote sensing image segmentation algorithm based on mathematical morphology[D]. Chengdu: Chengdu University of Technology, 2014. | |
24 | LU Z, WANG F L, CHANG Y Q, et al. Edge detection based on adaptive structure element morphology[C]//Proc. of the IEEE International Conference on Automation and Logistics, 2007: 254-257. |
25 | LI S, ZHOU G Q, ZHENG Z Z, et al. The relation between accuracy and size of structure element for vehicle detection with high resolution highway aerial images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2013: 2645-2648. |
26 |
YANG L , XING M D , WANG Y , et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (1): 165- 169.
doi: 10.1109/LGRS.2012.2196676 |
27 |
YANG L , ZHAO L F , BI G A , et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (4): 2254- 2267.
doi: 10.1109/TGRS.2015.2498158 |
28 | 李清泉, 王欢. 基于稀疏表示理论的优化算法综述[J]. 测绘地理信息, 2019, 44 (4): 1- 9. |
LI Q Q , WANG H . A review of optimization algorithms based on sparse representation theory[J]. Journal of Geomatics, 2019, 44 (4): 1- 9. | |
29 |
DONOHO D L , ARIAN M , ANDREA M . The noise-sensitivity phase transition in compressed sensing[J]. IEEE Trans.on Information Theory, 2011, 57 (10): 6920- 6941.
doi: 10.1109/TIT.2011.2165823 |
30 |
CHAN T H , JIA K , GAO S , et al. PCANet: a simple deep learning baseline for image classification[J]. IEEE Trans.on Image Processing, 2015, 24 (12): 5017- 5032.
doi: 10.1109/TIP.2015.2475625 |
[1] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[2] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
[3] | Manying WANG, Xiaofeng GONG, Ruisen LUO, Tong BIAN, Zhiyuan WANG. Joint blind parameter estimation of frequency hopping signal based on adaptive morphology [J]. Systems Engineering and Electronics, 2021, 43(5): 1398-1405. |
[4] | Lei YANG, Huijuan LI, Bo HUANG, Wei LIU, Pucheng LI. High resolution SAR imagery with structural feature enhancement under two-layer sparse group Lasso [J]. Systems Engineering and Electronics, 2021, 43(2): 351-362. |
[5] | Jia DUAN, Lanying CAO, Yifeng WU. Imaging algorithm for SAR based on attributed scattering center models [J]. Systems Engineering and Electronics, 2021, 43(10): 2782-2788. |
[6] | Shuxian DONG, Yinghui QUAN, Xiada CHEN, Xia GAO, Yachao LI, Mengdao XING. Interference suppression algorithm based on frequency agility combined with mathematical morphology [J]. Systems Engineering and Electronics, 2020, 42(7): 1491-1498. |
[7] | Zhenzhen YANG, Jun LE, Yongpeng YANG, Lu FAN. Object detection algorithm of nonconvex motion-assisted low rank and sparse decomposition [J]. Systems Engineering and Electronics, 2020, 42(6): 1218-1225. |
[8] | Yanheng MA, Gen LI, Xuying XIONG, Jianqiang HOU. High-squint compressed sensing SAR imaging mounted on maneuvering platform [J]. Systems Engineering and Electronics, 2020, 42(10): 2197-2206. |
[9] | ZHANG Huan, YANG Rennong, WU Jun, LI Qiuni, FU Xiuzhu, SUN Changyue. Research on multi-aircraft cooperative suppressing jamming embattling in electronic warfare planning [J]. Systems Engineering and Electronics, 2017, 39(3): 542-548. |
[10] | LI Jun-xia, SHUI Peng-lang. Refined matched filter based on Canny less oscillation critera [J]. Systems Engineering and Electronics, 2016, 38(7): 1543-1548. |
[11] | LIU Yan-yang, LI Zhen-fang, SUO Zhi-yong, LI Jin-wei, BAO Zheng. Impact of frequency oscillator errors on GEO SAR imaging performance [J]. Systems Engineering and Electronics, 2015, 37(1): 61-66. |
[12] | XU Peng-fei,YANG Yun, MIAO Qi-guang, MENG Ke-wen, ZHANG Jun-ying. Algorithm for automatic removal of the sand symbols in map digitizing [J]. Journal of Systems Engineering and Electronics, 2013, 35(3): 662-666. |
[13] | CHEN Zhongqi, YU Lei, ZHOU Zhongliang, FENG Guoqiang. Cooperative decision making of jammer formation in air fighter’s penetration attack [J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 307-312. |
[14] | LIU Huimin, WANG Hongqiang, LI Xiang. Research on contour extraction methods for inverse synthetic aperture radar images [J]. Journal of Systems Engineering and Electronics, 2010, 32(10): 2076-2080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||