Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (1): 245-252.doi: 10.3969/j.issn.1001-506X.2020.01.33
Gang ZHANG(), Fuqing TIAN(
), Weige LIANG(
), Bo SHE(
)
Received:
2019-05-13
Online:
2020-01-01
Published:
2019-12-23
Supported by:
CLC Number:
Gang ZHANG, Fuqing TIAN, Weige LIANG, Bo SHE. Construction method of bearing health indicator based on multi-scale AlexNet network[J]. Systems Engineering and Electronics, 2020, 42(1): 245-252.
Table 3
Parameters of network"
网络层 | 参数 |
输入层 | 尺寸:[100×100],通道数:3 |
卷积层1 | 卷积核尺寸:[11×11],步长:4,通道数:96 |
池化层1 | 卷积核尺寸:[3×3],步长:2,通道数:96 |
卷积层2 | 卷积核尺寸:[5×5],步长:1,通道数:256 |
池化层2 | 卷积核尺寸:[3×3],步长:2,通道数:256 |
卷积层3 | 卷积核尺寸:[3×3],步长:1,通道数:384 |
卷积层4 | 卷积核尺寸:[3×3],步长:1,通道数:384 |
卷积层5 | 卷积核尺寸:[3×3],步长:1,通道数:256 |
池化层5 | 卷积核尺寸:[3×3],步长:2,通道数:256 |
多尺度展平层 | 通道数:7 424(6 400+1 024) |
全连接层1 | 通道数:4 096 |
全连接层2 | 通道数:1 000 |
输出层 | 通道数:1 |
Table 4
Evaluation results of health indicator"
轴承编号 | RMS | PCA | ELM-AE | SDAE-SOM | MULCNN-HI | |||||||||
Tre | Mon | Tre | Mon | Tre | Mon | Tre | Mon | Tre | Mon | |||||
1_3 | 0.77 | 0.14 | 0.78 | 0.15 | 0.77 | 0.14 | 0.67 | 0.12 | 0.96 | 0.83 | ||||
1_4 | 0.32 | 0.16 | 0.32 | 0.15 | 0.31 | 0.15 | 0.41 | 0.17 | 0.97 | 0.76 | ||||
1_5 | 0.16 | 0.12 | 0.23 | 0.11 | 0.28 | 0.12 | 0.26 | 0.14 | 0.91 | 0.75 | ||||
1_6 | 0.10 | 0.10 | 0.16 | 0.11 | 0.18 | 0.11 | 0.31 | 0.13 | 0.84 | 0.43 | ||||
1_7 | 0.23 | 0.11 | 0.33 | 0.13 | 0.34 | 0.10 | 0.35 | 0.14 | 0.94 | 0.81 |
1 |
CERRADA M , SANCHEZ R V , LI C , et al. A review on data-driven fault severity assessment in rolling bearings[J]. Mechanical Systems and Signal Processing, 2018, 99, 169- 196.
doi: 10.1016/j.ymssp.2017.06.012 |
2 |
LEI Y G , LI N P , GUO L , et al. Machinery health prognostics:a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104, 799- 834.
doi: 10.1016/j.ymssp.2017.11.016 |
3 |
袁广超, 鲍劲松, 郑小虎, 等. 基于CNC实时监测数据驱动方法的钛合金高速铣削刀具寿命预测[J]. 中国机械工程, 2018, 29 (4): 457- 462.
doi: 10.3969/j.issn.1004-132X.2018.04.013 |
YUAN G C , BAO J S , ZHENG X H , et al. Tool life prediction in titanium high speed milling processes based on CNC real time monitoring data driven[J]. China Mechanical Engineering, 2018, 29 (4): 457- 462.
doi: 10.3969/j.issn.1004-132X.2018.04.013 |
|
4 | WANG D , TSUI K L , MIAO Q . Prognostics and health management:a review of vibration based bearing and gear health indicators[J]. IEEE Access, 2018, 6, 665- 676. |
5 |
CHAO H , BYENG D Y , WANG P F , et al. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[J]. Reliability Engineering and System Safety, 2012, 103, 120- 135.
doi: 10.1016/j.ress.2012.03.008 |
6 |
HONG S , ZHOU Z , ZIO E , et al. An adaptive method for health trend prediction of rotating bearings[J]. Digital Signal Processing, 2014, 35, 117- 123.
doi: 10.1016/j.dsp.2014.08.006 |
7 | JAVED K , GOURIVEAU R , ZERHOUNI N . Enabling health monitoring approach based on vibration data for accurate prognostics[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (1): 648- 656. |
8 | WIDODO A , YANG B S . Application of relevance vector machine and survival probability to machine degradation assessment[J]. Expert Systems with Applications, 2011, 38 (3): 2592- 2599. |
9 |
SOUALHI A , MEDJAHER K , ZERHOUNI N . Bearing health monitoring based on Hilbert-Huang transform, support vector machine and regression[J]. IEEE Trans.on Instrumentation and Measurement, 2015, 64 (1): 52- 62.
doi: 10.1109/TIM.2014.2330494 |
10 | 吴春志, 贾继德, 贾翔宇. 基于多尺度降维的柴油机信号信息熵增强方法[J]. 振动与冲击, 2018, 37 (3): 180- 185. |
WU C Z , JIA J D , JIA X Y . A method to enhance information entropy of diesel engine signals based on multi-scale dimention reduction[J]. Journal of Vibration and Shock, 2018, 37 (3): 180- 185. | |
11 |
LEI Y G , LI N P , LIN J . A model-based method for remaining useful life prediction of machinery[J]. IEEE Trans.on Reliability, 2016, 65 (3): 1314- 1326.
doi: 10.1109/TR.2016.2570568 |
12 | 孙健, 李洪儒. 一种基于复合谱与关联熵融合的特征提取方法[J]. 机械工程学报, 2017, 53 (24): 96- 103. |
SUN J , LI H R . Method for feature extraction based on composite spectrum and relative entropy fusion[J]. Journal of Mechanical Engineering, 2017, 53 (24): 96- 103. | |
13 |
BENKEDJOUH T , MEDJAHER K , ZERHOUNI N , et al. Health assessment and life prediction of cutting tools based on support vector regression[J]. Journal of Intelligent Manufacturing, 2015, 26, 213- 223.
doi: 10.1007/s10845-013-0774-6 |
14 |
LIAO L X , WEN J , PAVEL R . Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment[J]. IEEE Trans.on Industrial Eletronics, 2016, 63 (11): 7076- 7083.
doi: 10.1109/TIE.2016.2586442 |
15 |
WANG Y , PENG Y , ZI Y , et al. A two-stage data-driven-based prognostic approach for bearing degradation problem[J]. IEEE Trans.on Industrial Informatics, 2016, 12, 924- 932.
doi: 10.1109/TII.2016.2535368 |
16 | 赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018, 39 (6): 82- 88. |
ZHAO G Q , LIU X Y , JIANG Z D , et al. Unsupervised health indicator of bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2018, 39 (6): 82- 88. | |
17 |
GUO L , LEI Y G , LI N P , et al. Machinery health indicator construction based on convolutional neural networks considering trnd blur[J]. Neurocomputing, 2018, 292, 142- 150.
doi: 10.1016/j.neucom.2018.02.083 |
18 |
MARCO R , PIERO B , ENRICO Z , et al. Ensemble of optimized echo state networks for remaining useful life prediction[J]. Neurocomputing, 2018, 281, 121- 138.
doi: 10.1016/j.neucom.2017.11.062 |
19 | KRIZHEVSKY A , SUTSKEVER I , HINTON G . Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25 (2): 1097- 1105. |
20 | BERGSTRA J , BENGIO Y . Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13 (1): 281- 305. |
21 | NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]//Proc.of the IEEE International Conference on Prognostics and Health Management, 2012: 1-8. |
22 | HU Y, PALME T, FINK O. Deep health indicator extraction: a method based on auto-encoders and extreme learning machines[C]//Proc.of the Annual Conference of the Prognostics and Health Management Society, 2016: 1-7. |
[1] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[2] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[3] | Limin ZHANG, Kaiwen TAN, Wenjun YAN, Yuyuan ZHANG. Radar emitter recognition based on multi-level jumper residual network [J]. Systems Engineering and Electronics, 2022, 44(7): 2148-2156. |
[4] | Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network [J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822. |
[5] | Juan WEI, Huangwei YANG, Fangli NING. Acoustic scene classification based on joint optimization of NMF and CNN [J]. Systems Engineering and Electronics, 2022, 44(5): 1433-1438. |
[6] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[7] | Hong ZOU, Chenyang BAI, Peng HE, Yaping CUI, Ruyan WANG, Dapeng WU. Edge service placement strategy based on distributed deep learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1728-1737. |
[8] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[9] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[10] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
[11] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[12] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
[13] | Yunxiang YAO, Ying CHEN. Target tracking network based on dual-modal interactive fusion under attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 410-419. |
[14] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[15] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||