Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (1): 238-244.doi: 10.3969/j.issn.1001-506X.2020.01.32
Previous Articles Next Articles
Received:
2019-05-21
Online:
2020-01-01
Published:
2019-12-23
Contact:
Chun SU
E-mail:huangkui@seu.edu.cn;suchun@seu.edu.cn
Supported by:
CLC Number:
Kui HUANG, Chun SU. Failure prediction based on combined model of grey neural network[J]. Systems Engineering and Electronics, 2020, 42(1): 238-244.
Table 2
Prediction results and prediction errors of five models kV"
序号 | 实际值 | DI-GM | LM-BP | GM-BP1 | GM-BP2 | GM-BP3 | |||||||||
预测值 | 误差 | 预测值 | 误差 | 预测值 | 误差 | 预测值 | 误差 | 预测值 | 误差 | ||||||
13 | 4.943 | 4.693 | -0.250 | 4.626 | -0.317 | 4.659 | -0.284 | 4.741 | -0.202 | 4.474 | -0.469 | ||||
14 | 4.767 | 5.077 | 0.310 | 4.841 | 0.074 | 4.956 | 0.189 | 5.113 | 0.346 | 4.931 | 0.164 | ||||
15 | 5.593 | 5.711 | 0.118 | 5.753 | 0.160 | 5.732 | 0.139 | 5.395 | -0.198 | 5.434 | -0.159 | ||||
16 | 5.875 | 6.300 | 0.425 | 5.517 | -0.358 | 5.900 | 0.025 | 5.747 | -0.128 | 5.989 | 0.114 | ||||
17 | 6.598 | 6.950 | 0.352 | 6.828 | 0.230 | 6.888 | 0.290 | 6.694 | 0.096 | 6.600 | 0.002 |
Table 4
Prediction results and prediction errors of other models kV"
序号 | 实际值 | LM-RBF | LM-Elman | LS-SVM | |||||
预测值 | 误差 | 预测值 | 误差 | 预测值 | 误差 | ||||
13 | 4.943 | 4.683 | -0.260 | 4.751 | -0.192 | 5.116 | 0.173 | ||
14 | 4.767 | 5.142 | 0.375 | 5.058 | 0.291 | 5.373 | 0.606 | ||
15 | 5.593 | 6.107 | 0.514 | 5.937 | 0.344 | 5.475 | -0.118 | ||
16 | 5.875 | 5.561 | -0.314 | 5.741 | -0.134 | 6.051 | 0.176 | ||
17 | 6.598 | 6.819 | 0.221 | 6.452 | -0.146 | 6.837 | 0.239 |
1 |
BAPTISTA M , SANKARARAMAN S , MEDEIROS I P D , et al. Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling[J]. Computers and Industrial Engineering, 2018, 115, 41- 53.
doi: 10.1016/j.cie.2017.10.033 |
2 | DE FARIA H , COSTA J G S , OLIVAS J L M . A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 46, 201- 209. |
3 |
HE Y H , GU C C , CHEN Z X , et al. Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis[J]. International Journal of Production Research, 2017, 55 (19): 5841- 5862.
doi: 10.1080/00207543.2017.1346843 |
4 | KAN M S , TAN A C C , MATHEW J . A review on prognostic techniques for non-stationary and non-linear rotating systems[J]. Mechanical Systems and Signal Processing, 2015, (62/63): 1- 20. |
5 |
ZHU S P , HUANG H Z , PENG W , et al. Probabilistic physics of failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty[J]. Reliability Engineering and System Safety, 2016, 146, 1- 12.
doi: 10.1016/j.ress.2015.10.002 |
6 | JIN G , MATTHEWS D , FAN Y , et al. Physics of failure-based degradation modeling and lifetime prediction of the momentum wheel in a dynamic covariate environment[J]. Engineering Failure Analysis, 2013, 28 (3): 222- 240. |
7 |
ERIK E K , JOHN D S . Physics of failure as a basis for solder elements reliability assessment in wind turbines[J]. Reliability Engineering and System Safety, 2012, 108, 100- 107.
doi: 10.1016/j.ress.2012.06.020 |
8 | GUAN S , YAN L H , PENG C . Application of regression algorithm of LS-SVM in tool wear prediction[J]. China Mechanical Engineering, 2015, 26 (2): 217- 222. |
9 |
FINK O , ZIO E , WEIDMANN U . Predicting component reliability and level of degradation with complex-valued neural networks[J]. Reliability Engineering and System Safety, 2014, 121, 198- 206.
doi: 10.1016/j.ress.2013.08.004 |
10 |
LI X , DING Q , SUN J Q . Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172, 1- 11.
doi: 10.1016/j.ress.2017.11.021 |
11 | 赵建忠, 徐廷学, 叶文, 等. 基于数据融合和改进MUGM (1, m, w)的导弹装备故障预测[J]. 系统工程与电子技术, 2015, 37 (4): 832- 837. |
ZHAO J Z , XU T X , YE W , et al. Missile equipment fault prediction based on data fusion and improved MUGM (1, m, w)[J]. Systems Engineering and Electronics, 2015, 37 (4): 832- 837. | |
12 |
SHI M J , JIANG L , FU Y H . Study on prediction methods for the fault state of rotating machinery based on dynamic grey model and metabolism grey model[J]. Wireless Personal Communications, 2018, 102 (4): 3615- 3627.
doi: 10.1007/s11277-018-5395-0 |
13 | ZHANG Y W , ZOU Y J , LIU Z F , et al. Prediction of ship main engine exhaust gas temperature using AR model[J]. Applied Mechanics and Materials, 2015, 697, 244- 248. |
14 |
PHAM H T , YANG B S . Estimation and forecasting of machine health condition using ARMA/GARCH model[J]. Mechanical Systems and Signal Processing, 2010, 24 (2): 546- 558.
doi: 10.1016/j.ymssp.2009.08.004 |
15 |
ZHOU H W , HUANG J Q , LU F . Reduced kernel recursive least squares algorithm for aero-engine degradation prediction[J]. Mechanical Systems and Signal Processing, 2017, 95, 446- 467.
doi: 10.1016/j.ymssp.2017.03.046 |
16 |
QIAN Y N , YAN R Q . Remaining useful life prediction of rolling bearings using an enhanced particle filter[J]. IEEE Trans.on Instrumentation and Measurement, 2015, 64 (10): 2696- 2707.
doi: 10.1109/TIM.2015.2427891 |
17 | KAYACAN E , BARIS U , OKYAY K . Grey system theory-based models in time series prediction[J]. Expert Systems with Applications, 2010, 37 (2): 1784- 1789. |
18 |
YIN K D , GENG Y , LI X M . Improved grey prediction model based on exponential grey action quantity[J]. Journal of Systems Engineering and Electronics, 2018, 29 (3): 560- 570.
doi: 10.21629/JSEE.2018.03.13 |
19 | 刘思峰, 谢乃明. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2012. |
LIU S F , XIE N M . Grey system theory and application[M]. Beijing: Science Press, 2012. | |
20 |
YE Z , KIM M K . Predicting electricity consumption in a building using an optimized back-propagation and Levenberg-Marquardt back-propagation neural network:case study of a shopping mall in China[J]. Sustainable Cities and Society, 2018, 42, 176- 183.
doi: 10.1016/j.scs.2018.05.050 |
21 | SU L , ZHA Z , LU X , et al. Using BP network for ultrasonic inspection of flip chip solder joints[J]. Mechanical Systems and Signal Processing, 2013, 34 (1/2): 183- 190. |
22 |
王明涛. 确定组合预测权系数最优近似解的方法研究[J]. 系统工程理论与实践, 2000, 20 (3): 104- 109.
doi: 10.3321/j.issn:1000-6788.2000.03.018 |
WANG M T . Study on method of calculating optimal approximate solution about weight coefficients of combined forecasting methods[J]. System Engineering Theory and Practice, 2000, 20 (3): 104- 109.
doi: 10.3321/j.issn:1000-6788.2000.03.018 |
|
23 | CUI K , JING X . Research on prediction model of geotechnical parameters based on BP neural network[J]. Neural Computing and Applications, 2018, 29 (6): 1- 11. |
24 |
MARKOPOULOS A P , GEORGIOPOULOS S , MANOLAKOS D E . On the use of back propagation and radial basis function neural networks in surface roughness prediction[J]. Journal of Industrial Engineering International, 2016, 12 (3): 389- 400.
doi: 10.1007/s40092-016-0146-x |
25 |
LIU H , TIAN H Q , LIANG X F , et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neuralnetworks[J]. Applied Energy, 2015, 157, 183- 194.
doi: 10.1016/j.apenergy.2015.08.014 |
26 | AHMADI M A , EBADI M , HOSSEINI S M . Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach[J]. Fuel, 2014, 117, 579- 589. |
[1] | Shuang SONG, Yue ZHANG, Linna ZHANG, Yigang CEN, Yidong LI. Lightweight target detection algorithm based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2716-2725. |
[2] | Qian NIE, Lihua YANG, Bo HU, Lulu REN. Time-varying channel prediction method based on LSTM neural networks under basis expansion model [J]. Systems Engineering and Electronics, 2022, 44(9): 2971-2977. |
[3] | Jian WANG, Zihao HE, Jie LIU, Ke YANG. Image fusion algorithm based on gradient domain guided filtering and improved PCNN [J]. Systems Engineering and Electronics, 2022, 44(8): 2381-2392. |
[4] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[5] | Guan WANG, Haizhong RU, Dali ZHANG, Guangcheng MA, Hongwei XIA. Design of intelligent control system for flexible hypersonic vehicle [J]. Systems Engineering and Electronics, 2022, 44(7): 2276-2285. |
[6] | Cheng FAN, Buhong WANG, Jiwei TIAN. Node classification of airline network based on the graph convolution network model with multi-task learning [J]. Systems Engineering and Electronics, 2022, 44(7): 2341-2349. |
[7] | Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network [J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822. |
[8] | Juan WEI, Huangwei YANG, Fangli NING. Acoustic scene classification based on joint optimization of NMF and CNN [J]. Systems Engineering and Electronics, 2022, 44(5): 1433-1438. |
[9] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[10] | Pu ZHANG, Huifeng XUE, Shan GAO, Xuan ZUO. Distributed finite-time adaptive cooperative fault-tolerant control for multi-agent systems with integrated actuators faults [J]. Systems Engineering and Electronics, 2022, 44(4): 1220-1229. |
[11] | Yajie XU, Yong XIAN, Bangjie LI, Leliang REN, Shaopeng LI, Weilin GUO. Method for improving the precision of hypersonic vehicle inertial navigation system based on neural network [J]. Systems Engineering and Electronics, 2022, 44(4): 1301-1309. |
[12] | Wei FANG, Yu WANG, Wenjun YAN, Chong LIN. Symbolized flight action recognition based on neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 737-745. |
[13] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[14] | Xinyu ZHANG, Yuan LIU, Jianing SONG. Short-term orbit prediction based on LSTM neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 939-947. |
[15] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||