Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (7): 2011-2020.doi: 10.12305/j.issn.1001-506X.2021.07.34
• Reliability • Previous Articles
Ruifeng LI, Aiqiang XU*, Weichao SUN, Shuyou WANG
Received:
2020-07-14
Online:
2021-06-30
Published:
2021-07-08
Contact:
Aiqiang XU
CLC Number:
Ruifeng LI, Aiqiang XU, Weichao SUN, Shuyou WANG. Recommendation method for avionics feature selection algorithm basedon meta-learning[J]. Systems Engineering and Electronics, 2021, 43(7): 2011-2020.
Table 1
Avionics data set information"
序号 | 设备名称 | 实例数 | 特征数 | 故障类 | 序号 | 设备名称 | 实例数 | 特征数 | 故障类 | ||
1 | 中央控制设备(单座) | 377 | 25 | 2 | 9 | 后舱备份控制系统 | 516 | 30 | 3 | ||
2 | 中央控制设备(双座) | 559 | 31 | 2 | 10 | 超短波语音电台 | 687 | 77 | 6 | ||
3 | 电源启动转换盒(单座) | 455 | 23 | 4 | 11 | 无线电高度表 | 547 | 26 | 5 | ||
4 | 电源启动转换盒(双座) | 490 | 31 | 4 | 12 | 短波电台收发信机 | 472 | 65 | 6 | ||
5 | 微波着陆机载设备 | 526 | 63 | 5 | 13 | 短波电台数字天调 | 496 | 90 | 6 | ||
6 | 空管应答机 | 176 | 26 | 4 | 14 | 数传1/导航兼备设备 | 724 | 66 | 7 | ||
7 | 备份控制设备(单座) | 375 | 11 | 4 | 15 | 信标接收机 | 568 | 10 | 5 | ||
8 | 前舱备份控制系统 | 578 | 26 | 3 | 16 | 无线电罗盘 | 714 | 37 | 5 | ||
17 | 组合接收设备 | 193 | 93 | 10 | 30 | 数字视频记录仪 | 505 | 19 | 3 | ||
18 | 数据传输器 | 468 | 10 | 2 | 31 | CD接收机 | 178 | 29 | 4 | ||
19 | 数据传输卡 | 395 | 42 | 4 | 32 | 管理控制计算机 | 308 | 40 | 5 | ||
20 | 维护监控板 | 132 | 9 | 2 | 33 | 低功率射频单元 | 456 | 36 | 6 | ||
21 | 数字地图计算机 | 314 | 44 | 3 | 34 | ECM处理机 | 421 | 81 | 4 | ||
22 | 航空电子启动板 | 470 | 58 | 4 | 35 | 前端接收机A | 858 | 27 | 4 | ||
23 | 平视显示器 | 351 | 47 | 4 | 36 | 前端接收机B | 510 | 27 | 4 | ||
24 | 彩色多功能显示器 | 675 | 65 | 5 | 37 | 中央接收机 | 528 | 36 | 5 | ||
25 | 单色多功能显示器 | 536 | 86 | 8 | 38 | 前向中功率发射机 | 569 | 23 | 5 | ||
26 | 数据传输数字地图 | 336 | 29 | 3 | 39 | 前向高功率发射机 | 683 | 23 | 5 | ||
27 | 正前方控制面板 | 583 | 58 | 5 | 40 | 后向中功率发射机 | 599 | 23 | 5 | ||
28 | 前舱正前方控制板 | 540 | 59 | 6 | 41 | 箔条/红外弹控制器 | 484 | 229 | 10 | ||
29 | 后舱正前方控制板 | 495 | 58 | 6 | 42 | 视频监视器 | 404 | 8 | 3 |
1 | 张伟, 许爱强, 平殿发. 基于一种自适应核学习的KECA子空间故障特征提取[J]. 北京理工大学学报, 2017, 37 (8): 864- 868. |
ZHANG W , XU A Q , PING D F . A method for feature extraction in KECA feature subspace based on adaptive kernel learning[J]. Transactions of Beijing Institute of Technology, 2017, 37 (8): 864- 868. | |
2 |
SU Z Q , TANG B P , DENG L , et al. Fault diagnosis method using supervised extended local tangent space alignment for dimension reduction[J]. Measurement, 2015, 62, 1- 14.
doi: 10.1016/j.measurement.2014.11.003 |
3 |
DEMETGUL M , YILDIZ K , TASKIN S , et al. Fault diagnosis on material handling system using feature selection and data mining techniques[J]. Measurement, 2014, 55, 15- 24.
doi: 10.1016/j.measurement.2014.04.037 |
4 |
WANG G T , SONG Q B , XU B W , et al. Selecting feature subset for high dimensional data via the propositional FOIL rules[J]. Pattern Recognition, 2013, 46 (1): 199- 214.
doi: 10.1016/j.patcog.2012.07.028 |
5 | SHILBAYEH S, VADERA S. Feature selection in meta learning framework[C]//Proc.of the Science and Information Conference, 2014: 269-275. |
6 | 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27 (2): 161- 166, 192. |
YAO X , WANG X D , ZHANG Y X , et al. Summary of feature selection algorithms[J]. Control and Decision, 2012, 27 (2): 161- 166, 192. | |
7 | ZHAN H. Application of rough set and support vector machine in fault diagnosis of power electronic circuit[C]//Proc.of the IEEE 2nd International Conference on Information Management & Engineering, 2010: 289-292. |
8 |
GAO W F , HU L , ZHANG P , et al. Feature selection consi-dering the composition of feature relevancy[J]. Pattern Recognition Letters, 2018, 112, 70- 74.
doi: 10.1016/j.patrec.2018.06.005 |
9 | ZHOU F Y, XUE B, CHEN K. Particle swarm optimization for feature selection with adaptive mechanism and new updating strategy[C]//Proc.of the 31st Australasian Joint Conference Artificial Intelligence, 2018: 419-431. |
10 | WANG Z X, ZHAO M, CHEN S Y. Feature selection based on extreme learning machine[C]//Proc. of the 3rd International Conference on Deep Learning Technologies, 2019: 57-63. |
11 | TANG X, DONG M, BI S. Feature selection algorithm based on K-means clustering[C]//Proc.of the IEEE 7th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, 2018: 1522-1527. |
12 | 曾子林, 张宏军, 张睿, 等. 基于元学习思想的算法选择问题综述[J]. 控制与决策, 2014, 29 (6): 961- 968. |
ZENG Z L , ZHANG H J , ZHANG R , et al. Summary of algorithm selection problem based on meta-learning[J]. Control and Decision, 2014, 29 (6): 961- 968. | |
13 | FILCHENKOV A, PENDRYAK A. Datasets meta-feature description for recommending feature selection algorithm[C]//Proc.of the Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search Fruct Conference, 2016: 11-18. |
14 | WANG G T , SONG Q B , SUN H L , et al. A feature subset selection algorithm automatic recommendation method[J]. Journal of Artificial Intelligence Research, 2014, 47 (1): 1- 34. |
15 |
PARMEZAN A R S , LEE H D , WU F C . Metalearning for choosing feature selection algorithms in data mining: proposal of a new framework[J]. Expert Systems with Applications, 2017, 75, 1- 24.
doi: 10.1016/j.eswa.2017.01.013 |
16 |
LORENA A C , MACIEL A I , PÉRICLES B C , et al. Data complexity meta-features for regression problems[J]. Machine Learning, 2018, 107, 209- 246.
doi: 10.1007/s10994-017-5681-1 |
17 | SONG Q B , WANG G T , WANG C . Automatic recommendation of classification algorithms based on data set characteristics[J]. Pattern Recognition, 2012, 45 (7): 67- 81. |
18 | 高明哲. 基于相关向量机的载电子设备PHM关键技术研究[D]. 烟台: 海军航空大学, 2017. |
GAO M Z. Research on key technologies of PHM for airborne electronic equipment based on relevance vector machine[D]. Yantai: Naval Aviation University, 2017. | |
19 |
SUN Q , PFAHRINGER B . Pairwise meta-rules for better meta-learning based algorithm ranking[J]. Machine Learning, 2013, 93 (1): 141- 161.
doi: 10.1007/s10994-013-5387-y |
20 |
BRAZDIL P B , SOARES C , DA COSTA C J . Ranking learning algorithms: using IBL and meta-learning on accuracy and time results[J]. Machine Learning, 2003, 50 (3): 251- 277.
doi: 10.1023/A:1021713901879 |
21 | NGUYEN H B, XUE B, ANDREAE P, et al. Particle swarm optimisation with genetic operators for feature selection[C]//Proc.of the IEEE Congress on Evolutionary Computation, 2017: 286-293. |
22 | SMETANNIKOV I, DEYNEKA A, FILCHENKOV A. Meta learning application in rank aggregation feature selection[C]//Proc.of the 3rd International Conference on Soft Computing and Machine Intelligence, 2016: 120-123. |
23 |
WANG J , HEDAR A R , WANG S , et al. Rough set and scatter search metaheuristic based feature selection for credit scoring[J]. Expert Systems with Applications, 2012, 39 (6): 6123- 6128.
doi: 10.1016/j.eswa.2011.11.011 |
24 | LUCIEN M, LAETITIA J, MARIE-ELÉONORE K M, et al. Feature selection using Tabu search with learning memory: learning Tabu search[C]//Proc.of the International Confe-rence on Learning and Intelligent Optimization, 2016. |
25 | SINGH S , SINGH A K . Correlation-based feature subset selection technique for web spam classification[J]. International Journal of Web Engineering and Technology, 2019, 13 (4): 363. |
26 |
KOWSHALYA A M , MADHUMATHI R , GOPIKA N . Correlation based feature selection algorithms for varying datasets of different dimensionality[J]. Wireless Personal Communications, 2019, 108 (3): 1977- 1993.
doi: 10.1007/s11277-019-06504-w |
27 |
SONG Q B , NI J J , WANG G T . A fast clustering-based feature subset selection algorithm for high-dimensional data[J]. IEEE Trans.on Knowledge and Data Engineering, 2013, 25 (1): 1- 14.
doi: 10.1109/TKDE.2011.181 |
28 |
DE S C , FONTANELLA F , MARROCCO C , et al. A GA-based feature selection approach with an application to handwritten character recognition[J]. Pattern Recognition Letters, 2014, 35, 130- 141.
doi: 10.1016/j.patrec.2013.01.026 |
29 |
PALMA-MENDOZA R J , RODRIGUEZ D , DE-MARCOS L . Distributed reliefF-based feature selection in spark[J]. Knowledge & Information Systems, 2018,
doi: 10.1007/s10115-017-1145-y |
30 |
TSAMARDINOS I , BORBOUDAKIS G , KATSOGRIDAKIS P , et al. A greedy feature selection algorithm for big data of high dimensionality[J]. Machine Learning, 2019, 108, 149- 202.
doi: 10.1007/s10994-018-5748-7 |
[1] | Juncheng GUO, Gang WAN, Xinjie HU, Fabao YAN, Shuai WANG. Meta-learning method for solar radio spectrum burst recognition [J]. Systems Engineering and Electronics, 2022, 44(8): 2410-2418. |
[2] | Bo LI, Jiahao ZHOU, Minmin LIU, Pinchao ZHU. Feature selection for welding defect assessment based on improved NSGA3 [J]. Systems Engineering and Electronics, 2022, 44(7): 2211-2218. |
[3] | Sheng GAO, Guangfu MA, Yanning GUO. Fast reconstruction of multiple faults based on adaptive unknown input observer [J]. Systems Engineering and Electronics, 2022, 44(7): 2364-2373. |
[4] | Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network [J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059. |
[5] | Jiachen LIU, Lei DONG, Changxiao ZHAO, Hongbing CHEN. Simulation and verification of DIMA dynamic reconfiguration based on formal method [J]. Systems Engineering and Electronics, 2022, 44(4): 1282-1290. |
[6] | Qi LIU, Xinyu ZHANG, Yongxiang LIU. Few-shot SAR target recognition based on gated multi-scale matching network [J]. Systems Engineering and Electronics, 2022, 44(11): 3346-3356. |
[7] | Langcai CAO, Xiaochang LIN, Sixing SU. Unsupervised feature selection based on matrix factorization and adaptive graph [J]. Systems Engineering and Electronics, 2021, 43(8): 2197-2208. |
[8] | Zhigang JIN, Tong WU. Intrusion detection based on feature selection and tree Parzen estimation [J]. Systems Engineering and Electronics, 2021, 43(7): 1954-1960. |
[9] | Peng WANG, Jiachen LIU, Lei DOND, Changxiao ZHAO. Task oriented DIMA dynamic reconfiguration strategy for civil aircraft [J]. Systems Engineering and Electronics, 2021, 43(6): 1618-1627. |
[10] | Yunhao SHI, Hua XU, Wanze ZHENG, Yinghui LIU. Few-shot modulation recognition method based on ensemble learning and feature dimension reduction [J]. Systems Engineering and Electronics, 2021, 43(4): 1099-1109. |
[11] | Li WANG, Ziqi LIU. Fault diagnosis of analog circuit for WPA-IGA-BP neural network [J]. Systems Engineering and Electronics, 2021, 43(4): 1133-1143. |
[12] | Zehai GAO, Cunbao MA, Haotian NIU. Performance degradation Lévy model of integrated modular avionics [J]. Systems Engineering and Electronics, 2021, 43(4): 1144-1152. |
[13] | Jinling DAI, Aiqiang XU. Local multiple kernel extreme learning machine fault diagnosis model with dynamic fuzzy clustering for avionics [J]. Systems Engineering and Electronics, 2021, 43(3): 637-646. |
[14] | Chen MENG, Huahui YANG, Cheng WANG, Zheng MA. Review on data-driven fault diagnosis for electronic components and units level of weapon system [J]. Systems Engineering and Electronics, 2021, 43(2): 574-583. |
[15] | Yunfei MA, Xisheng JIA, Huajun BAI, Chiming GUO, Shuangchuan WANG. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters [J]. Systems Engineering and Electronics, 2020, 42(9): 1911-1919. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||