Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (9): 1911-1919.doi: 10.3969/j.issn.1001-506X.2020.09.05
Previous Articles Next Articles
Yunfei MA(), Xisheng JIA(
), Huajun BAI(
), Chiming GUO(
), Shuangchuan WANG(
)
Received:
2019-12-27
Online:
2020-08-26
Published:
2020-08-26
CLC Number:
Yunfei MA, Xisheng JIA, Huajun BAI, Chiming GUO, Shuangchuan WANG. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters[J]. Systems Engineering and Electronics, 2020, 42(9): 1911-1919.
Table 2
Orthogonal experimental design of CNN model for planetary gear box"
序号 | 卷积核个数A | 卷积核大小B | 批尺寸C | 池化层大小D | 准确率/% | 时间/s |
1 | 5 | 50 | 5 | 2 | 76.9 | 74.99 |
2 | 5 | 100 | 10 | 5 | 93.1 | 43.81 |
3 | 5 | 200 | 20 | 10 | 82.5 | 35.41 |
4 | 10 | 50 | 10 | 10 | 87.5 | 82.92 |
5 | 10 | 100 | 20 | 2 | 63.1 | 223.78 |
6 | 10 | 200 | 5 | 5 | 95.0 | 194.43 |
7 | 15 | 50 | 20 | 5 | 60.0 | 262.63 |
8 | 15 | 100 | 5 | 10 | 92.5 | 256.65 |
9 | 15 | 200 | 10 | 2 | 60.6 | 628.43 |
Table 3
Statistic analysis result of experimental data"
序号 | 卷积核个数A | 卷积核大小B | 批尺寸C | 池化层大小D |
T1 | 252.5%(154.21) | 224.4%(420.54) | 264.4%(526.07) | 200.6%(927.2) |
T2 | 245.6%(501.13) | 248.7%(524.24) | 241.2%(755.16) | 248.1%(500.87) |
T3 | 213.1%(1 147.71) | 238.1(858.27) | 205.6%(521.82) | 262.5%(374.98) |
m1 | 84.2%(51.40) | 74.8%(140.18) | 88.1%(175.36) | 66.9%(309.07) |
m2 | 81.9%(167.04) | 82.9%(174.75) | 80.4%(251.72) | 82.7%(166.96) |
m3 | 71.0%(382.57) | 79.4%(286.09) | 68.5%(173.94) | 87.5%(124.99) |
R | 13.2%(331.17) | 8.1%(145.91) | 19.6%(77.78) | 20.6%(184.08) |
Table 5
Bearing experimental samples"
数据样本 | 故障深度/mm | 电机功率/HP | 电机转速/rpm |
1(N) | - | 0/1/2/3 | 1797/1772/1750/1730 |
2(IR) | 7 | 0/1/2/3 | 1797/1772/1750/1730 |
3(B) | 7 | 0/1/2/3 | 1797/1772/1750/1730 |
4(OR) | 7 | 0/3/1/2 | 1797/1730/1772/1750 |
5(IR) | 14 | 0/1/2/3 | 1797/1772/1750/1730 |
6(B) | 14 | 0/1/2/3 | 1797/1772/1750/1730 |
7(OR) | 14 | 0/1/2/3 | 1797/1772/1750/1730 |
8(IR) | 21 | 0/1/2/3 | 1797/1772/1750/1730 |
9(B) | 21 | 0/1/2/3 | 1797/1772/1750/1730 |
10(OR) | 21 | 1/3/0/2 | 1772/1730/1797/1750 |
1 | HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural network[J]. Science, 2006, 313 (5786): 504- 507. |
2 | 周奇才, 刘星辰, 赵炯, 等. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击, 2018, 37 (23): 31- 37. |
ZHOU Q C , LIU X C , ZHAO J , et al. Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37 (23): 31- 37. | |
3 | 赵春华, 胡恒星, 陈保家, 等. 基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断[J]. 振动与冲击, 2019, 38 (10): 31- 37, 48. |
ZHAO C H , HU H X , CHEN B J , et al. Bearing fault diagnosis based on deep learning feature extraction and WOA-SVM state recognition[J]. Journal of Vibration and Shock, 2019, 38 (10): 31- 37, 48. | |
4 | SHAO H D , JIANG H K , ZHAO H W , et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems & Signal Processing, 2017, 95, 187- 204. |
5 | 曲建岭, 余路, 袁涛, 等. 基于卷积神经网络的层级化智能故障诊断算法[J]. 控制与决策, 2019, 34 (12): 2619- 2626. |
QU J L , YU L , YUAN T , et al. A hierarchical intelligent fault diagnosis algorithm based on convolutional neural network[J]. Control and Decision, 2019, 34 (12): 2619- 2626. | |
6 | FENG J , LEI Y G , LIN J , et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems & Signal Processing, 2016, 72/73, 303- 315. |
7 | LU C , WANG Z Y , QIN W L , et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130, 377- 388. |
8 | GAN M , WANG C , ZHU C A . Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J]. Mechanical Systems & Signal Processing, 2016, 72/73, 92- 104. |
9 | 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32 (8): 345- 358. |
REN H , QU J F , CHAI Y , et al. Deep learning for fault diagnosis: The state of the art and challenge[J]. Control and Decision, 2017, 32 (8): 345- 358. | |
10 | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25 (2): 1097- 1105. |
11 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9. |
12 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc.of the Computer Vision and Pattern Recognition, 2016: 770-778. |
13 | CHEN Z Q , LI C , SANCHEZ R V . Gearbox fault identification and classification with convolutional neural networks[J]. Shock and Vibration, 2015, (2): 390134. |
14 | ZHANG W, PENG G L, LI C H. Rolling element bearings fault intelligent diagnosis based on convolutional neural networks using raw sensing signal[C]//Proc.of the 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2017: 77-84. |
15 |
INCE T , KIRANYAZ S , EREN L , et al. Real-time motor fault detection by 1D convolutional neural networks[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (11): 7067- 7075.
doi: 10.1109/TIE.2016.2582729 |
16 | 吴春志, 江鹏程, 冯辅周, 等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击, 2018, 37 (22): 51- 56. |
WU C Z , JIANG P C , FENG F Z , et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37 (22): 51- 56. | |
17 | 朱会杰, 王新晴, 芮挺, 等. 基于平移不变CNN的机械故障诊断研究[J]. 振动与冲击, 2019, 38 (5): 45- 52. |
ZHU H J , WANG X Q , RUI T , et al. Machinery fault diagnosis based on shift invariant CNN[J]. Journal of Vibration and Shock, 2019, 38 (5): 45- 52. | |
18 | CANDES E J. Compressive sampling[C]//Proc.of International Congress of Mathematics, 2006, 3: 1433-1452. |
19 | CANDÈS E J , TAO T . Decoding by linear programming[J]. IEEE Trans.on Information Theory, 2005, 51 (12): 4203- 4215. |
20 |
DONOHO D L . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
21 | TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans.on Information Theory, 2007, 53 (12): 4655- 4666. |
22 | ZHANG X P , HU N Q , HU L , et al. A bearing fault diagnosis method based on the low dimensional compressed vibration signal[J]. Advances in Mechanical Engineering, 2015, 7 (7): 1- 12. |
23 | WANG Y X , XIANG J W , MO Q Y , et al. Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis[J]. Measurement, 2015, 68, 70- 81. |
24 | TANG G , HOU W , WANG H Q , et al. Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals[J]. sensors, 2015, 15 (10): 25648- 25662. |
25 | 温江涛, 闫常弘, 孙洁娣, 等. 基于压缩采样与深度学习的轴承故障诊断方法[J]. 仪器仪表学报, 2018, 39 (1): 171- 179. |
WEN J T , YAN C H , SUN J D , et al. Bearing fault diagnosis method based on compressed acquisition and deep learning[J]. Chinese Journal of Scientific Instrument, 2018, 39 (1): 171- 179. | |
26 | MA Y F , JIA X S , BAI H J , et al. A new fault diagnosis method based on convolutional neural network and compressive sensing[J]. Journal of Mechanical Science and Technology, 2019, 33, 5177- 5188. |
27 | LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324. |
28 | 方开泰, 刘民千, 周永道. 试验设计与建模[M]. 北京: 高等教育出版社, 2011: 81- 114. |
FANG K T , LIU M Q , ZHOU Y D . Design and modeling of experiments[M]. Beijing: Higher Education Press, 2011: 81- 114. | |
29 | 张新峰, 焦月, 李欢欢, 等. 基于粒子群算法的Universum SVM参数选择[J]. 北京工业大学学报, 2013, 39 (6): 840- 845. |
ZHANG X F , JIAO Y , LI H H , et al. Model paremeter selection of the universum SVM based on particle swarm optimazation[J]. Journal of Beijing University of Technology, 2013, 39 (6): 840- 845. | |
30 | COELLO C A C , PULIDO T G , LECHUGA M S . Handling multiple objectives with particle swarm optimization[J]. Evolutionary Computation, 2004, 8 (3): 256- 279. |
[1] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[2] | Sheng GAO, Guangfu MA, Yanning GUO. Fast reconstruction of multiple faults based on adaptive unknown input observer [J]. Systems Engineering and Electronics, 2022, 44(7): 2364-2373. |
[3] | Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network [J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059. |
[4] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[5] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[6] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
[7] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[8] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
[9] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[10] | Bo DAN, Zhequan FU, Shan GAO, Tao JIAN. Full-polarization high resolution range profile recognition technology for sea surface target based on convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(1): 108-116. |
[11] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[12] | Feng RUAN, Liang GUO, Yachao LI, Ran XU. Phased array radar forward-looking imaging based on correlated imaging [J]. Systems Engineering and Electronics, 2021, 43(9): 2457-2462. |
[13] | Ruifeng LI, Aiqiang XU, Weichao SUN, Shuyou WANG. Recommendation method for avionics feature selection algorithm basedon meta-learning [J]. Systems Engineering and Electronics, 2021, 43(7): 2011-2020. |
[14] | Dongfang XUE, Xiaoxiu ZHU, Wenhua HU, Baofeng GUO, Huiyan ZENG. Bi-ISAR imaging based on weighted l1 norm optimization algorithm [J]. Systems Engineering and Electronics, 2021, 43(4): 944-953. |
[15] | Li WANG, Ziqi LIU. Fault diagnosis of analog circuit for WPA-IGA-BP neural network [J]. Systems Engineering and Electronics, 2021, 43(4): 1133-1143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||