Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (9): 1903-1910.doi: 10.3969/j.issn.1001-506X.2020.09.04
Previous Articles Next Articles
Jiachi SUN(), Huanxin ZOU*(
), Zhipeng DENG(
), Meilin LI(
), Xu CAO(
), Qian MA(
)
Received:
2019-09-20
Online:
2020-08-26
Published:
2020-08-26
Contact:
Huanxin ZOU
E-mail:s.jcsome@gmail.com;hxzou2008@163.com;dzp_whu@163.com;summit_mll@qq.com;1135459767@qq.com;2233809618@qq.com
CLC Number:
Jiachi SUN, Huanxin ZOU, Zhipeng DENG, Meilin LI, Xu CAO, Qian MA. Oriented inshore ship detection and classification based on cascade RCNN[J]. Systems Engineering and Electronics, 2020, 42(9): 1903-1910.
1 | 李晓斌, 江碧涛, 杨渊博, 等. 光学遥感图像目标检测技术综述[J]. 航天返回与遥感, 2019, 40 (4): 95- 104. |
LI X B , JIANG B T , YANG Y B , et al. A survey on object detection technology in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 2019, 40 (4): 95- 104. | |
2 |
LIU Z K , WANG H Z , WENG L B , et al. Ship rotated bound-ing box space for ship extraction from high-resolution optical satellite images with complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (8): 1074- 1078.
doi: 10.1109/LGRS.2016.2565705 |
3 | MA L, GUO J, WANG Y Q, et al. Ship detection by salient convex boundaries[C]//Proc.of the International Congress on Image and Signal Processing, 2010: 202-205. |
4 |
LIU G , ZHANG Y S , ZHENG X W , et al. A new method on inshore ship detection in high-resolution satellite images using shape and context information[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (3): 617- 621.
doi: 10.1109/LGRS.2013.2272492 |
5 |
LI S , ZHOU Z Q , WANG B , et al. A novel inshore ship detection via ship head classification and body boundary determination[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (12): 1920- 1924.
doi: 10.1109/LGRS.2016.2618385 |
6 | 刘松涛, 姜康辉, 刘振兴. 基于区域协方差和目标度的航空侦察图像舰船目标检测[J]. 系统工程与电子技术, 2019, 41 (5): 972- 980. |
LIU S T , JIANG K H , LIU Z X , et al. Ship target detection of aerial reconnaissance image based on region covariance and objectness[J]. Systems Engineering and Electronics, 2019, 41 (5): 972- 980. | |
7 |
YANG F , XU Q Z , LI B , et al. Ship detection from optical sate-llite images based on saliency segmentation and structure-LBP feature[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (5): 602- 606.
doi: 10.1109/LGRS.2017.2664118 |
8 | 黎经元, 厉小润, 赵辽英. 基于边缘线分析与聚合通道特征的港口舰船检测[J]. 光学学报, 2019, 39 (8): 225- 234. |
LI J Y , LI X R , ZHAO L Y , et al. Docked ship detection based on edge line analysis and aggregation channel features[J]. Acta Optical Sinica, 2019, 39 (8): 225- 234. | |
9 |
REN S Q , HE K M , ROSS G , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Tran.on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
10 | ZOU Z X, SHI Z W. Ship detection in spaceborne optical image with SVD networks[C]//Proc.of the IEEE Trans.on Geoscience and Remote Sensing, 2016, 54(10): 5832-5845. |
11 | TANG T Y , ZHOU S L , DENG Z P , et al. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining[J]. Sensors, 2017, 17 (2): 336- 348. |
12 |
DENG Z P , SUN H , ZHOU S L , et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens-ing, 2017, 10 (8): 3652- 3664.
doi: 10.1109/JSTARS.2017.2694890 |
13 |
DENG Z P , SUN H , ZHOU S L , et al. Multi-scale object detection in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 3- 22.
doi: 10.1016/j.isprsjprs.2018.04.003 |
14 |
LIN H N , SHI Z W , ZOU Z X , et al. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sens-ing Letters, 2017, 14 (10): 1665- 1669.
doi: 10.1109/LGRS.2017.2727515 |
15 | LIU Z K, HU J G, WENG L B, et al. Rotated region based CNN for ship detection[C]//Proc.of the IEEE International Conference Image Process, 2017: 900-904. |
16 | XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proc.of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983. |
17 | 余东行, 郭海涛, 赵传, 等. 直线特征辅助的靠岸舰船检测[J]. 测绘科学技术学报, 2019, 36 (3): 275- 280, 286. |
YU D X , GUO H T , ZHAO C , et al. Detection of ship docked in harbor assisted with line feature[J]. Journal of Geomatics Science and Technology, 2019, 36 (3): 275- 280, 286. | |
18 | JIAN D, XUE N, LONG Y, et al. Learning ROI transformer for detecting oriented objects in aerial images[C]//Proc.of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2844-2853. |
19 | XIAO X W, ZHOU Z Q, WANG B, et al. Accurate ship detection via paired semantic segmentation[C]//Proc.of the Chinese Control and Decision Conference, 2019: 5990-5994. |
20 |
ZHANG Z H , GUO W W , ZHU S N , et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1745- 1749.
doi: 10.1109/LGRS.2018.2856921 |
21 |
LIU W C , MA L , CHEN H , et al. Arbitrary-Oriented ship detection framework in optical remote-sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (6): 937- 941.
doi: 10.1109/LGRS.2018.2813094 |
22 |
YANG X , SUN H , SUN X , et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6, 50839- 50849.
doi: 10.1109/ACCESS.2018.2869884 |
23 | 陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8 (3): 413- 424. |
CHEN H Y , LIU Z Y , GUO W W , et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8 (3): 413- 424. | |
24 | 仲伟峰, 郭峰, 向世明, 等. 旋转矩形区域的遥感图像舰船目标检测模型[J]. 计算机辅助设计与图形学学报, 2019, 31 (11): 1935- 1945. |
ZHONG W F , GUO F , XIANG S M , et al. Ship detection in remote sensing based with rotated rectangular region[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31 (11): 1935- 1945. | |
25 | ZHAO W C, NUNO V. Cascade R-CNN: delving into high quality object detection[C]//Proc.of the IEEE Conference Compute Vision Pattern Recognition, 2018: 6154-6162. |
26 | ALEXANDER N, LUC V G. Efficient non-maximum suppression[C]//Proc.of the International Conference on Pattern Recog-nition, 2006: 850-855. |
27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learn-ing for image recognition[C]//Proc.of the IEEE Conference Compute Vision Pattern Recognition, 2016: 770-778. |
28 | CANNY J . A computational approach to edge detection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1986, 8 (6): 679- 698. |
29 | RICHARD O D , PETER E H . Use of the Hough transform to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15 (1): 11- 15. |
30 |
BALLARD D H . Generalizing the Hough transform to detect arbitrary shapes[J]. Pattern Recognition, 1981, 13 (2): 111- 122.
doi: 10.1016/0031-3203(81)90009-1 |
[1] | Zhipeng WU, Ping ZHANG, Zhen LI, Lei HUANG, Chang LIU, Shuo GAO. Vegetation height inversion method based on light-weighted and small UAV-radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3667-3675. |
[2] | Yanjun LI, Jia LIU, Qiufeng XU. BP autofocus algorithm based on Chebyshev fitting [J]. Systems Engineering and Electronics, 2022, 44(10): 3020-3028. |
[3] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[4] | Bin LIU, Xiangyu FAN, Ziwei ZHANG, Ye ZHANG. Detection algorithm of BPSK signal based on adaptive scale change-bistable stochastic resonance model [J]. Systems Engineering and Electronics, 2022, 44(7): 2084-2095. |
[5] | Jinling LIAO, Guisheng LIAO, Jingwei XU, Lan LAN. Analysis on the performance of resolving range ambiguity based on a coding scheme design for EPC-MIMO [J]. Systems Engineering and Electronics, 2022, 44(7): 2166-2174. |
[6] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[7] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[8] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[9] | Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking [J]. Systems Engineering and Electronics, 2022, 44(2): 470-479. |
[10] | Xingjia YANG, Keqing DUAN, Xiang LI, Wei QI. Resolving range ambiguity for cooperative detection using UAV swarms [J]. Systems Engineering and Electronics, 2022, 44(2): 480-489. |
[11] | Feng RUAN, Liang GUO, Yachao LI, Ran XU. Phased array radar forward-looking imaging based on correlated imaging [J]. Systems Engineering and Electronics, 2021, 43(9): 2457-2462. |
[12] | Wen FANG, Yinghui QUAN, Minghui SHA, Zhixing LIU, Xia GAO, Mengdao XING. Dense false targets jamming suppression algorithm based on frequency agility and waveform entropy [J]. Systems Engineering and Electronics, 2021, 43(6): 1506-1514. |
[13] | Dongfang XUE, Xiaoxiu ZHU, Wenhua HU, Baofeng GUO, Huiyan ZENG. Bi-ISAR imaging based on weighted l1 norm optimization algorithm [J]. Systems Engineering and Electronics, 2021, 43(4): 944-953. |
[14] | Lei YANG, Huijuan LI, Bo HUANG, Wei LIU, Pucheng LI. High resolution SAR imagery with structural feature enhancement under two-layer sparse group Lasso [J]. Systems Engineering and Electronics, 2021, 43(2): 351-362. |
[15] | Shuxian DONG, Yinghui QUAN, Xiada CHEN, Xia GAO, Yachao LI, Mengdao XING. Interference suppression algorithm based on frequency agility combined with mathematical morphology [J]. Systems Engineering and Electronics, 2020, 42(7): 1491-1498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||