Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (3): 637-646.doi: 10.12305/j.issn.1001-506X.2021.03.06
• Electronic Technology • Previous Articles Next Articles
Received:
2020-06-16
Online:
2021-03-01
Published:
2021-03-16
CLC Number:
Jinling DAI, Aiqiang XU. Local multiple kernel extreme learning machine fault diagnosis model with dynamic fuzzy clustering for avionics[J]. Systems Engineering and Electronics, 2021, 43(3): 637-646.
Table 1
Index values of Gauss4 static"
方法 | 分类精度 | F1 | G-mean |
SimpleMKL[ | 0.856 9±0.012 1 | 0.862 1±0.012 4 | 0.858 8±0.011 9 |
GMKL-SVM[ | 0.865 5±0.007 3 | 0.870 1±0.011 8 | 0.871 1±0.004 8 |
l1-FCLMKELM[ | 0.869 9±0.009 7 | 0.881 2±0.011 1 | 0.876 7±0.010 1 |
M2-LCMKELM[ | 0.876 0±0.119 0 | 0.884 8±0.005 0 | 0.879 4±0.010 3 |
M1-DFCMKELM | 0.880 4±0.016 5 | 0.884 5±0.012 1 | 0.883 0±0.014 3 |
M2-DFCMKELM | 0.893 8±0.015 9 | 0.891 8±0.015 8 | 0.8950±0.015 3 |
Table 5
Time cost of methods s"
算法 | 训练时间 | 测试时间 |
SimpleMKL | 0.665 2±0.020 1 | 0.169 5±0.003 5 |
GMKL-SVM | 0.756 4±0.018 6 | 0.164 8±0.002 4 |
l1-FCLMKELM | 1.943 2±0.047 3 | 0.138 3±0.011 4 |
M2-LCMKELM | 1.831 9±0.083 9 | 0.138 4±0.005 8 |
M1-DFCMKELM | 1.864 7±0.164 6 | 0.127 3±0.012 9 |
M2-DFCMKELM | 1.756 1±0.223 1 | 0.138 2±0.011 8 |
1 |
ZHAO R , YAN R Q , CHEN Z H , et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115, 213- 237.
doi: 10.1016/j.ymssp.2018.05.050 |
2 |
HAN J H , CHOI D J , HONG S K . Study on development of deep learning fault diagnosis algorithm considering induction motor speed and loadcondition[J]. Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (3): 423- 429.
doi: 10.5370/KIEE.2019.68.3.423 |
3 | TANG S H , SHEN C Q , WANG D , et al. Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis[J]. Neurocomputing, 2018, 305 (AUG.30): 1- 14. |
4 |
HAO X , ZHANG G G , MA S . Deep learning[J]. International Journal of Semantic Computing, 2016, 10 (3): 417- 439.
doi: 10.1142/S1793351X16500045 |
5 | TRIPOLITI E E , ZERVAKIS M , FOTIADIS D I . Multiple kernel learning algorithms and their use in biomedical informatics[M]. Springer International Publishing, 2016. |
6 |
BIYUN A S , JUN L B , FU X A , et al. Multilayer deep features with multiple kernel learning for action recognition[J]. Neurocomputing, 2020, 399, 65- 74.
doi: 10.1016/j.neucom.2020.02.096 |
7 | 刘敏, 张英堂, 李志宁, 等. 基于增量稀疏核极限学习机的柴油机故障在线诊断[J]. 上海交通大学学报, 2019, 53 (2): 95- 102. |
LIU M , ZHANG Y T , LI Z N , et al. Diesel engine fault online diagnosis method based on incremental sparse kernel extreme learning machine[J]. Journal of Shanghai Jiaotong University, 2019, 53 (2): 217- 224. | |
8 | 徐睿, 梁循, 齐金山, 等.极限学习机前沿进展与趋势[J/OL].[2020-03-29]. http://kns.cnki.net/kcms/detail/11.1826.TP.20190301.1029.002.html. |
XU R, LIANG X, QI J S, et al. Advances and trends in extreme learning machine[J/OL]. http://kns.cnki.net/kcms/detail/11.1826.TP.20190301.1029.002.html. | |
9 | RAKOTOMAMONJY A , BACH F R , CANU S , et al. SimpleMKL[J]. Journal of Machine Learning Research, 2008, 9, 2491- 2521. |
10 | LIU X W , WANG L , HUANG G B , et al. Multiple kernel extreme learning machine[J]. Neurocomputing, 2015, 149 (pt, a): 253- 264. |
11 |
WU D H , WANG Z L , CHEN Y , et al. Mixed-kernel based weighted extreme learning machine for inertial sensor basedhuman activity recognition with imbalanced dataset[J]. Neurocomputing, 2016, 190, 35- 49.
doi: 10.1016/j.neucom.2015.11.095 |
12 |
LI X D , MAO W J , JIANG W . Multiple kernel learning based extreme learning machine for classification design[J]. Neural Computing and Applications, 2016, 27 (1): 175- 184.
doi: 10.1007/s00521-014-1709-7 |
13 | XUE J M , LIU Q , LI M M , et al. Incremental multiple kernel extreme learning machine and its application in Robo-advisors[J]. Soft Computing, 2018, 22 (11): 1- 11. |
14 | GÖNEN M , ALPAYDIN E . Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011, 12, 2211- 2268. |
15 |
YE F M , ZHANG Z B , CHAKRABARTY K , et al. Board-level functional fault diagnosis using multi-kernel support vector machines and incremental learning[J]. IEEE Trans.on Computer-aided Design of Integrated Circuits and Systems, 2014, 33 (2): 279- 290.
doi: 10.1109/TCAD.2013.2287184 |
16 |
ZHANG C L , HE Y G , YUAN L F , et al. A novel approach for diagnosis of analog circuit fault by using GMKL-SVM and PSO[J]. Journal of Electronic Testing, 2016, 32, 531- 540.
doi: 10.1007/s10836-016-5616-y |
17 | LI Y X , REN C Q , BO J Y , et al. The application of GMKL algorithm to faultdiagnosis of local area network[J]. Journal of Networks, 2014, 9 (3): 747- 753. |
18 |
GÖNEN M , ALPAYDIN E . Localized algorithms for multiple kernel learning[J]. Pattern Recognition, 2013, 46, 795- 807.
doi: 10.1016/j.patcog.2012.09.002 |
19 | WANG X M , HUANG Z X , DU Y J . Improving localized multiple kernel learning via radius-margin bound[J]. Mathematical Problems in Engineering, 2017, 2017 (1): 4579214. |
20 |
HAN Y N , LIU G Z . Probability-confidence-kernel-based localized multiple kernel learning with Lp norm[J]. IEEE Trans.on Systems, Man and Cybernetics—Part B: Cybernetics, 2012, 42 (3): 827- 837.
doi: 10.1109/TSMCB.2011.2179291 |
21 |
HAN Y N , YANG K D , LIU G Z . Lp norm localized multiple kernel learning via semi-definite programming[J]. IEEE Signal Processing Letters, 2012, 19 (10): 688- 691.
doi: 10.1109/LSP.2012.2212431 |
22 |
HAN Y N , YANG K D , MA Y L , et al. Localized multiple kernel learning via sample-wise alternating optimization[J]. IEEE Trans.on Cybernetics, 2014, 44 (1): 137- 147.
doi: 10.1109/TCYB.2013.2248710 |
23 | LIU X W, WANG L, ZHANG J, et al. Sample-adaptive multiple kernel learning[C]//Proc.of the 28th AIAA Conference on Artificial Intelligence, 2014: 1975-1981. |
24 | CAO Z, PRINCIPE J C, OUYANG B. Group feature selection in image classification with multiple kernel learning[C] //Proc.of the IEEE International Joint Conference on Neural Networks, 2015. |
25 |
YANG J J , TIAN Y H , LI Y N , et al. Group-sensitive multiple kernel learning for object recognition[J]. IEEE Trans.on Image Processing, 2012, 21 (5): 2838- 2852.
doi: 10.1109/TIP.2012.2183139 |
26 | 张伟, 许爱强, 平殿发. 融合K近邻信息的局部三层交替优化MK诊断模型[J]. 仪器仪表学报, 2018, 39 (5): 123- 131. |
ZHANG W , XU A Q , PING D F . Multi-kernel fault diagnosis model with K nearest neighbor information based on localized three-step alternating optimization[J]. Chinese Journal of Scientific Instrument, 2018, 39 (5): 123- 131. | |
27 | HAN Y N , YANG K D , YANG Y X , et al. Localized multiple kernel learning with dynamical clustering and matrix regularization[J]. IEEE Trans.on Neural Networks and Learning Systems, 2018, 29 (2): 486- 499. |
28 | 张伟, 许爱强, 平殿发, 等. 基于近邻传播聚类的航空电子部件LMK诊断模型[J]. 北京航空航天大学学报, 2018, 44 (8): 1693- 1704. |
ZHANG W , XU A Q , PING D F , et al. Localized multi-kernel diagnosis model for avionics based on affinity propagation clustering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (8): 1693- 1704. | |
29 | 朱敏, 许爱强, 李睿峰, 等. 基于隶属度和LMK-ELM的航空电子部件诊断方法[J]. 航空学报, 2019, 40 (12): 207- 219. |
ZHU M , XU A Q , LI R F , et al. Diagnosis method for avionics based on membership and LMK-ELM[J]. Acta Aeronautica Et Astronautica Sinica, 2019, 40 (12): 207- 219. | |
30 | MIN R , PEI Y L , ZHI H W , et al. A self-adaptive fuzzy C-means algorithm for determining the optimal number of clusters[J]. Computational Intelligence and Neuroscience, 2016, 1- 12. |
31 |
李米娜, 朱玉全, 陈耿, 等. 一种基于局部密度的核K-means算法[J]. 计算机应用研究, 2011, 28 (1): 78- 80.
doi: 10.3969/j.issn.1001-3695.2011.01.020 |
LI M N , ZHU Y Q , CHEN G , et al. Kernel K-means cluster-ing algorithm based on local density[J]. Computer Application and Rearch, 2011, 28 (1): 78- 80.
doi: 10.3969/j.issn.1001-3695.2011.01.020 |
[1] | Sheng GAO, Guangfu MA, Yanning GUO. Fast reconstruction of multiple faults based on adaptive unknown input observer [J]. Systems Engineering and Electronics, 2022, 44(7): 2364-2373. |
[2] | Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network [J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059. |
[3] | Ruifeng LI, Aiqiang XU, Weichao SUN, Shuyou WANG. Recommendation method for avionics feature selection algorithm basedon meta-learning [J]. Systems Engineering and Electronics, 2021, 43(7): 2011-2020. |
[4] | Li WANG, Ziqi LIU. Fault diagnosis of analog circuit for WPA-IGA-BP neural network [J]. Systems Engineering and Electronics, 2021, 43(4): 1133-1143. |
[5] | Chen MENG, Huahui YANG, Cheng WANG, Zheng MA. Review on data-driven fault diagnosis for electronic components and units level of weapon system [J]. Systems Engineering and Electronics, 2021, 43(2): 574-583. |
[6] | Yunfei MA, Xisheng JIA, Huajun BAI, Chiming GUO, Shuangchuan WANG. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters [J]. Systems Engineering and Electronics, 2020, 42(9): 1911-1919. |
[7] | Bo LI, Lin ZHANG, Wenfeng WANG, Guannan WANG. Fault feature extraction method based on Park-HHT [J]. Systems Engineering and Electronics, 2020, 42(12): 2944-2952. |
[8] | Ruifeng LI, Aiqiang XU, Weichao SUN, Yangyong WU. Preprocessing method based on sample resampling for imbalanced data of electronic circuits [J]. Systems Engineering and Electronics, 2020, 42(11): 2654-2660. |
[9] | LIU Jiufu, ZHANG Zhiguo, ZHENG Rui, LIU Haiyang, YANG Zhong, WANG Zhisheng. Fault diagnosis of bipropellant propulsion system using partially observed time Petri nets [J]. Systems Engineering and Electronics, 2018, 40(6): 1337-1344. |
[10] | ZHU Wei, MA Weiming, YANG Xidang, XIAO Huan. Tracking control of ship borne quad-roto UAV based on robust fault diagnosis LPV model [J]. Systems Engineering and Electronics, 2018, 40(11): 2540-. |
[11] | WEI Zijie, CHEN Shengjian. Fault diagnosis for circuits with tolerance based on multifeature cloud relational matrix#br# [J]. Systems Engineering and Electronics, 2017, 39(12): 2665-2670. |
[12] | CHEN Yin-sheng, JIANG Shou-da, LIU Xiao-dong, YANG Jing-li, WANG Qi. Self-validating gas sensor fault diagnosis method based on EEMD sample entropy and SRC [J]. Systems Engineering and Electronics, 2016, 38(5): 1215-. |
[13] | ZHOU Meng, WANG Zhenhua, SHEN Yi, WANG Yan. Unknown input filter based fault diagnosis method for overactuated systems [J]. Systems Engineering and Electronics, 2016, 38(12): 2842-2848. |
[14] | GUO Jian-bin, JI Ding-fei, WANG Xin, ZENG Sheng-kui, ZHAO Jian-yu. Hybrid state estimation and fault diagnosis algorithm of hybrid systems using particle filter [J]. Systems Engineering and Electronics, 2015, 37(8): 1936-1942. |
[15] | JIN Yang, WANG Ri-xin, XU Min-qiang. Spacecraft autonomous fault diagnosis method based on state memory [J]. Systems Engineering and Electronics, 2015, 37(6): 1452-1458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||