Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (3): 631-636.doi: 10.12305/j.issn.1001-506X.2021.03.05
• Electronic Technology • Previous Articles Next Articles
Xiaofeng TAN1(), Xihai LI1(
), Xiaoniu ZENG1(
), Zhiqian KANG2(
), Guangshuai LI1(
)
Received:
2020-05-12
Online:
2021-03-01
Published:
2021-03-16
CLC Number:
Xiaofeng TAN, Xihai LI, Xiaoniu ZENG, Zhiqian KANG, Guangshuai LI. Design of novel rotary paraboloid transducer array[J]. Systems Engineering and Electronics, 2021, 43(3): 631-636.
1 | 陈敏.声频定向系统理论与关键技术研究[D].成都: 电子科技大学, 2008. |
CHEN M. Research on the theory and key technologies of audio directional system[D]. Chengdu: University of Electronic Science and Technology of China, 2008. | |
2 | 郑贤中.高指向性音频声波理论与控制研究[D].武汉: 华中科技大学, 2006. |
ZHENG X Z. Theory and control of high directivity audio aound wave[D]. Wuhan: Huazhong University of Science & Techno-logy, 2006. | |
3 | 陈晶晶, 邹彬彬, 王润田. 关于参量阵声源阵长的讨论[J]. 声学技术, 2016, 35 (5): 426- 429. |
CHEN J J , ZOU B B , WANG R T . Discussion on parametric acoustic array length[J]. Technical Acoustics, 2016, 35 (5): 426- 429. | |
4 | CHENG Y , XU J Y , LIU X J . Tunable sound directional beaming assisted by acoustic surface wave[J]. Applied Physicsletters, 2010, 96 (7): 071910. |
5 |
GUARATO F , JAKOBSEN L , VANDERELST D , et al. A method for estimating the orientation of a directional sound source from source directivity and multi-microphone recordings: principles and application[J]. The Journal of the Acoustical Society of America, 2011, 129 (2): 1046- 1058.
doi: 10.1121/1.3519408 |
6 | BENJAMIN K C , BUREN A L V , SZELAG J A , et al. A constant beamwidth transducer for ultrasonic applications[J]. The Journal of the Acoustical Society of America, 2006, 120 (5): 3067- 3067. |
7 | WYGANT I O, KUPNIK M, KHURI-YAKUB B T, et al. The design and characterization of capacitive micromachined ultrasonic transducers (CMUTs) for generating high-intensity ultrasound for transmission of directional audio[C]//Proc.of the Ultrasonics Symposium, 2008. |
8 |
LEIF B . Forty years of nonlinear ultrasound[J]. Ultrasonics, 2002, 40 (1-8): 11- 17.
doi: 10.1016/S0041-624X(02)00084-7 |
9 |
YAMASHITA K , KATATA H , OKUYAMA M , et al. Arrayed ultrasonic microsensors with high directivity for in-air use using PZT thin film on silicon diaphragms[J]. Sensors and Actuators A: Physical, 2002, 97-98, 302- 307.
doi: 10.1016/S0924-4247(02)00037-7 |
10 |
LAMBERTI N , ESPINOSA F R M D , IULA A , et al. Two-dimensional modelling of multifrequency piezocomposites[J]. Ultrasonics, 2000, 37 (8): 577- 583.
doi: 10.1016/S0041-624X(99)00028-1 |
11 | OPPENHEIM I J , JAIN A , GREVE D W . Electrical characterization of coupled and uncoupled MEMS ultrasonic transdu-cers[J]. IEEE Trans.on Ultrasonics Ferroelectrics & Frequency Control, 2003, 50 (3): 297- 304. |
12 | 周晗昀, 黄善和. 宽带参量阵在浅地层剖面测量中的应用[J]. 浙江大学学报(工学版), 2020, 54 (5): 972- 977. |
ZHOU H Y , HUANG S H . Application of broadband parametric array in sub-bottom profile measurement[J]. Journal of Zhejiang University (Engineering), 2020, 54 (5): 972- 977. | |
13 |
ECCARDT P C , NIEDERER K . Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process[J]. Ultrasonics, 2000, 38 (1-8): 774- 780.
doi: 10.1016/S0041-624X(99)00085-2 |
14 |
ZHANG J , HLADKY-HENNION A C , HUGHES W J , et al. A miniature class V flextensional cymbal transducer with directional beam patterns: the double-driver[J]. Ultrasonics, 2001, 39 (2): 91- 95.
doi: 10.1016/S0041-624X(00)00055-X |
15 | 李颂文. 参量阵及其在水声工程中的应用进展[J]. 声学技术, 2011, 30 (1): 9- 16. |
LI S W . Parametric array and its application in underwater acoustic engineering: an overview[J]. Technical Acoustics, 2011, 30 (1): 9- 16. | |
16 |
LEE W , ROH Y . Ultrasonic transducers for medical diagnostic imaging[J]. Biomedical Engineering Letters, 2017, 7 (2): 91- 97.
doi: 10.1007/s13534-017-0021-8 |
17 |
MARTINEZ O , MOSTAFA A , LUIS G , et al. A small 2D ultrasonic array for NDT applications[J]. NDT and E International, 2003, 36 (1): 57- 63.
doi: 10.1016/S0963-8695(02)00072-5 |
18 |
SHI C , GAN W S . Development of parametric loudspeaker[J]. IEEE Potentials, 2010, 29 (6): 20- 24.
doi: 10.1109/MPOT.2010.938148 |
19 | 杜鹏, 汤惠, 曹光亮. 超声调制的声频定向传输效率分析[J]. 压电与声光, 2015, 37 (5): 907- 911. |
DU P , TANG H , CAO G L . The efficiency analysis of ultrasound-modulated audio directional transmission[J]. Piezoelectrics & Acoustooptics, 2015, 37 (5): 907- 911. | |
20 | 宋蕊, 张明, 冯怡斯. 压电MEMS超声换能器阵列声场研究[J]. 压电与声光, 2015, 37 (2): 219- 222. |
SONG R , ZHANG M , FENG Y S . Research on sound field of MEMS piezoelectric ultrasonic transducer array[J]. Piezoelectrics & Acoustooptics, 2015, 37 (2): 219- 222. | |
21 | 杨天文, 陈敏, 黄大贵, 等. 换能器阵列形式对指向性的影响[J]. 压电与声光, 2014, 36 (1): 93- 96. |
YANG T W , CHEN M , HUANG D G , et al. Effect of transducer's array pattern on array's directivity[J]. Piezoelectrics & Acoustooptics, 2014, 36 (1): 93- 96. | |
22 |
PARK C Y , SUNG J H , JEONG J S . Design and fabrication of linear-array ultrasonic transducer using KLM and FEM simulation for non-destructive testing[J]. Journal of the Korean Society for Nondestructive Testing, 2015, 35 (2): 120- 127.
doi: 10.7779/JKSNT.2015.35.2.120 |
23 |
TSENG W . Acoustic beam forming using ultrasonic transdu-cers[J]. Advanced Engineering Forum, 2012, 4, 238- 242.
doi: 10.4028/www.scientific.net/AEF.4.238 |
24 |
刘健康, 王莉, 鲁五一, 等. 影响超声换能器阵指向性的几个关键因素研究[J]. 压电与声光, 2013, 35 (4): 564- 567.
doi: 10.3969/j.issn.1004-2474.2013.04.025 |
LIU J K , WANG L , LU W Y , et al. Study on several key factors of fluencing the directivity of ultrasonic transduer array[J]. Piezoelectrics & Acoustooptics, 2013, 35 (4): 564- 567.
doi: 10.3969/j.issn.1004-2474.2013.04.025 |
|
25 | 宋寿鹏, 张瑜, 吴华清. 全矩阵线形超声换能器阵列声场仿真与设计[J]. 电子测量技术, 2019, 42 (20): 162- 168. |
SONG S P , ZHANG Y , WU H Q . Simulation and design of acoustic field for full matrix linear transducer array[J]. Electronic Measurement Technology, 2019, 42 (20): 162- 168. | |
26 | WANG Z H , ZHU W G , MIAO J M , et al. Micromachined thick film piezoelectric ultrasonic transducer array[J]. Sensors & Actuators A Physical, 2006, 130 (2): 485- 490. |
27 |
HU H W , DU J , YE C B , et al. Ultrasonic phased array sparse-tfm imaging based on sparse array optimization and new edge-directed interpolation[J]. Sensors, 2018, 18 (6): 1806- 1830.
doi: 10.3390/s18061806 |
28 | 栾桂冬, 张金铎, 王仁乾. 压电换能器和换能器阵[M]. 北京: 北京大学出版社, 2004. |
LUAN G D , ZHANG J D , WANG R Q . Piezoelectric transducer and transducer array[M]. Beijing: Peking University Press, 2004. | |
29 | 李道江, 陈航, 倪云鹿. 阵元间互辐射对基阵指向性的影响研究及试验[J]. 声学学报, 2012, (3): 319- 323. |
LI D J , CHEN H , NI Y L . Research and experiments of mutual radiation impedance effect on array directivity[J]. Acta Acustica, 2012, (3): 319- 323. |
[1] | Yiqun ZHANG, Lan LAN, Guisheng LIAO, Jingwei XU. Mainlobe deceptive jammer suppression with FDA-MIMO radarbased on secondary compensation [J]. Systems Engineering and Electronics, 2022, 44(9): 2769-2775. |
[2] | Fuhai WAN, Jingwei XU, Zhenrong ZHANG. Robust anti-main lobe range deceptive jamming technology with FDA-MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(9): 2809-2816. |
[3] | Yili HU, Yongbo ZHAO, Sheng CHEN, Ben NIU. Decoherence of conformal electromagnetic vector sensor array by double interpolation fitting method [J]. Systems Engineering and Electronics, 2022, 44(8): 2393-2402. |
[4] | Jialei LIU, Jiazhi MA, Longfei SHI. DOA estimation algorithm based on fourth-order cumulant using virtual beam forming [J]. Systems Engineering and Electronics, 2022, 44(7): 2134-2142. |
[5] | Yingjian ZHAO, Bo TIAN, Chunyang WANG, Jian GONG, Ming TAN, Changlin ZHOU. Space-time joint suppression method of main-beam SMSP jamming based on FDA-MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(7): 2157-2165. |
[6] | Juan LIU, Quanyong SU, Zheng SHI, Xianmou XUE. Optimization design and performance research on microchannel liquid cooling of phased array antenna [J]. Systems Engineering and Electronics, 2022, 44(6): 1782-1788. |
[7] | Fa WEI, Minglei YANG, Xiaojing HE, Dingsen ZHOU, Baixiao CHEN. Simultaneous multi-beam forming method for planar array based on improved particle swarm algorithm [J]. Systems Engineering and Electronics, 2022, 44(6): 1789-1797. |
[8] | Zhiyu QU, Meng SUN, Huanyao DAI. Joint estimation algorithm of DOA and polarization information based on conformal array [J]. Systems Engineering and Electronics, 2022, 44(6): 1798-1804. |
[9] | Bo TANG, Naiwen LIU, Jing MA, Kunyi GUO, Xinqing SHENG. Analysis of the joint PDF of the simulation error in the radio frequency simulation system [J]. Systems Engineering and Electronics, 2022, 44(5): 1454-1460. |
[10] | Yuzhuo WANG, Shengqi ZHU, Ximin LI, Lan LAN. Range ambiguous clutter suppression for FDA MIMO bistatic radar with main lobe correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1483-1494. |
[11] | Juan WEI, Shian YAN, Fangli NING. DOA estimation method for coherent signals based on coprime array virtual array spatial smoothing [J]. Systems Engineering and Electronics, 2022, 44(4): 1069-1077. |
[12] | Zhanling WANG, Chen PANG, Jiapeng YIN, Yongzhen LI, Xuesong WANG. Polarization control method for wideband phased array based on polarization state configuration [J]. Systems Engineering and Electronics, 2022, 44(3): 795-801. |
[13] | Baohua FAN, Le ZUO, Yong TANG, Zehua HU. DOA estimation of multiple time-varying signals with expectation-maximization algorithm [J]. Systems Engineering and Electronics, 2022, 44(2): 420-426. |
[14] | Junkui TANG, Zheng LIU, Rong XIE, Bo ZENG. Optimal design method for sparse array of MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3661-3666. |
[15] | Zhiyuan YOU, Guoping HU, Hao ZHOU. Bistatic nested MIMO radar based on redundant element optimization joint estimation method of target DOD and DOA [J]. Systems Engineering and Electronics, 2022, 44(12): 3696-3702. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||